2.845

2023影响因子

(CJCR)

  • 中文核心
  • EI
  • 中国科技核心
  • Scopus
  • CSCD
  • 英国科学文摘

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于事件触发机制的多自主水下航行器协同路径跟踪控制

王浩亮 柴亚星 王丹 刘陆 王安青 彭周华

王浩亮, 柴亚星, 王丹, 刘陆, 王安青, 彭周华. 基于事件触发机制的多自主水下航行器协同路径跟踪控制. 自动化学报, 2024, 50(5): 1024−1034 doi: 10.16383/j.aas.c211163
引用本文: 王浩亮, 柴亚星, 王丹, 刘陆, 王安青, 彭周华. 基于事件触发机制的多自主水下航行器协同路径跟踪控制. 自动化学报, 2024, 50(5): 1024−1034 doi: 10.16383/j.aas.c211163
Wang Hao-Liang, Chai Ya-Xing, Wang Dan, Liu Lu, Wang An-Qing, Peng Zhou-Hua. Event-triggered cooperative path following of multiple autonomous underwater vehicles. Acta Automatica Sinica, 2024, 50(5): 1024−1034 doi: 10.16383/j.aas.c211163
Citation: Wang Hao-Liang, Chai Ya-Xing, Wang Dan, Liu Lu, Wang An-Qing, Peng Zhou-Hua. Event-triggered cooperative path following of multiple autonomous underwater vehicles. Acta Automatica Sinica, 2024, 50(5): 1024−1034 doi: 10.16383/j.aas.c211163

基于事件触发机制的多自主水下航行器协同路径跟踪控制

doi: 10.16383/j.aas.c211163
基金项目: 国家自然科学基金(51979020, 51909021, 51939001, 52071044), 国家青年拔尖人才计划(36261402), 辽宁省博士科研启动计划(2023-BS-077), 辽宁省教育厅高等学校基本科研项目(LJKZ0044, LJKQZ2021007), 大连海事大学博联科研基金(3132023616), 水路交通控制全国重点实验室开放课题(SKLMTA-DMU2024Y3), 大连市科技局高层次人才创新项目(2020RQ013)资助
详细信息
    作者简介:

    王浩亮:大连海事大学轮机工程学院副教授. 2021年获得大连海事大学博士学位. 主要研究方向为多自主水下航行器路径规划和协同路径跟踪. E-mail: haoliang.wang12@dlmu.edu.cn

    柴亚星:大连海事大学轮机工程学院硕士研究生. 2018年获得南阳理工学院学士学位. 主要研究方向为多自主水下航行器协同路径跟踪. E-mail: yaxingchai@dlmu.edu.cn

    王丹:大连海事大学船舶电气工程学院教授. 2001年获得香港中文大学博士学位. 主要研究方向为控制理论及其在海洋航行器中的应用. 本文通信作者. E-mail: dwang@dlmu.edu.cn

    刘陆:大连海事大学船舶电气工程学院副教授. 2018年获得大连海事大学博士学位. 主要研究方向为多水面船制导与控制. E-mail: luliu@dlmu.edu.cn

    王安青:大连海事大学船舶电气工程学院副教授. 2020年获得香港城市大学和哈尔滨工业大学博士学位. 主要研究方向为不确定非线性系统, 事件触发机制与协同控制. E-mail: anqingwang@dlmu.edu.cn

    彭周华:大连海事大学船舶电气工程学院教授. 2011年获得大连海事大学博士学位. 主要研究方向为多水面无人船协同控制. E-mail: zhpeng@dlmu.edu.cn

Event-triggered Cooperative Path Following of Multiple Autonomous Underwater Vehicles

Funds: Supported by National Natural Science Foundation of China (51979020, 51909021, 51939001, 52071044), Top-notch Young Talents Program of China (36261402), Doctoral Scientific Research Program of Liaoning Province (2023-BS-077), Basic Scientific Research Project of Higher Education Department of Liaoning Province (LJKZ0044, LJKQZ2021007), Bolian Research Funds of Dalian Maritime University (3132023616), Open Project of State Key Laboratory of Maritime Technology and Safety (SKLMTA-DMU2024Y3), and Dalian Science and Technology Bureau High-level Talent Innovation Project (2020RQ013)
More Information
    Author Bio:

    WANG Hao-Liang Associate professor at the College of Marine Engineering, Dalian Maritime University. He received his Ph.D. degree from Dalian Maritime University in 2021. His research interest covers path planning and cooperative path following of multiple autonomous underwater vehicles

    CHAI Ya-Xing Master student at the College of Marine Engineering, Dalian Maritime University. She received her bachelor degree from Nanyang Institute of Technology in 2018. Her main research interest is cooperative path following of multiple autonomous underwater vehicles

    WANG Dan  Professor at the College of Marine Electrical Engineering, Dalian Maritime University. He received his Ph.D. degree from Chinese University of Hong Kong in 2001. His research interest covers control theory and its applications in marine vehicles. Corresponding author of this paper

    LIU Lu  Associate professor at the College of Marine Electrical Engineering, Dalian Maritime University. She received her Ph.D. degree from Dalian Maritime University in 2018. Her main research interest is guidance and control of multiple marine surface vehicles

    WANG An-Qing Associate professor at the College of Marine Electrical Engineering, Dalian Maritime University. She received her Ph.D. degree from City University of Hong Kong and Harbin Institute of Technology in 2020. Her research interest covers uncertain nonlinear systems, event-triggered mechanism and cooperative control

    PENG Zhou-Hua Professor at the College of Marine Electrical Engineering, Dalian Maritime University. He received his Ph.D. degree from Dalian Maritime University in 2011. His main research interest is cooperative control of multiple unmanned surface vehicles

  • 摘要: 针对考虑外部海洋环境扰动和内部模型不确定性的多自主水下航行器(Autonomous underwater vehicle, AUV), 研究其在通信资源受限和机载能量受限下的协同路径跟踪控制问题. 首先, 针对水声通信信道窄造成的通信资源受限问题, 设计一种基于事件触发机制(Event-triggered mechanism, ETM)的协同通信策略; 然后, 针对模型不确定性和海洋环境扰动问题, 设计一种基于事件触发机制的线性扩张状态观测器(Extended state observer, ESO)来逼近水下航行器的未知动力学, 并降低了系统采样次数; 最后, 针对机载能量受限问题, 设计一种基于事件触发机制的动力学控制律, 在保证控制精度的前提下, 降低了执行机构的动作频次, 从而节省了能量消耗. 应用级联系统稳定性分析方法, 分别验证了闭环系统是输入状态稳定的且系统不存在Zeno行为. 仿真结果验证了所提基于事件触发机制的多自主水下航行器协同路径跟踪控制方法的有效性.
  • 图  1  垂直面参考坐标系

    Fig.  1  Vertical plane reference coordinate system

    图  2  基于事件触发的协同路径跟踪控制器结构图

    Fig.  2  Architecture of event-triggered cooperative path following controller

    图  3  协同路径跟踪性能效果

    Fig.  3  Cooperative path following performance effect

    图  4  路径参数$\chi_{i}$

    Fig.  4  Path variables $\chi_{i}$

    图  5  垂直面内协同路径跟踪误差

    Fig.  5  Cooperative path following errors in vertical plane

    图  6  速度估计效果

    Fig.  6  Velocity estimation effect

    图  7  扰动估计

    Fig.  7  Disturbance estimation

    图  8  通信触发事件

    Fig.  8  Communication triggering events

    图  9  AUV1的速度触发事件

    Fig.  9  Velocity triggering events of AUV1

    图  10  AUV1的控制输入触发事件

    Fig.  10  Control input triggering events of AUV1

    表  1  触发次数

    Table  1  Triggering times

    触发内容 事件触发 时间触发 采样
    周期
    (s)
    百分比
    最大值
    (%)
    AUV1 AUV2 AUV3 AUV$i$
    ($i$=1, 2, 3)
    协同次数($\chi_{i}$) 91 102 124 10 000 0.04 1.24
    采样次数($u_{i}$) 324 352 420 10 000 0.04 4.20
    采样次数($q_{i}$) 286 363 297 10 000 0.04 3.63
    执行次数($\tau_{iu}$) 585 592 451 10 000 0.04 5.92
    执行次数($\tau_{iq}$) 487 523 553 10 000 0.04 5.53
    下载: 导出CSV
  • [1] 刘妹琴, 韩学艳, 张森林, 郑荣濠, 兰剑. 基于水下传感器网络的目标跟踪技术研究现状与展望. 自动化学报, 2021, 47(2): 235−251 doi: 10.16383/j.aas.c190886

    Liu Mei-Qin, Han Xue-Yan, Zhang Sen-Lin, Zheng Rong-Hao, Lan Jian. Research status and prospect of target tracking technologies via underwater sensor networks. Acta Automatica Sinica, 2021, 47(2): 235−251 doi: 10.16383/j.aas.c190886
    [2] Gafurov S A, Klochkov E V. Autonomous unmanned underwater vehicles development tendencies. Procedia Engineering, 2015, 106(1): 141−148
    [3] 马广富, 梅杰. 多星系统相对轨道的自适应协同控制. 控制理论与应用, 2011, 28(6): 781−787

    Ma Guang-Fu, Mei Jie. Adaptive cooperative control for relative orbits of multi-satellite systems. Control Theory & Applications, 2011, 28(6): 781−787
    [4] 王银涛, 严卫生. 多自主水下航行器系统一致性编队跟踪控制. 控制理论与应用, 2013, 30(3): 379−384 doi: 10.7641/CTA.2013.20422

    Wang Yin-Tao, Yan Wei-Sheng. Consensus formation tracking control of multiple autonomous underwater vehicle systems. Control Theory & Applications, 2013, 30(3): 379−384 doi: 10.7641/CTA.2013.20422
    [5] Gu N, Wang D, Peng Z H, Liu L. Adaptive bounded neural network control for coordinated path-following of networked under-actuated autonomous surface vehicles under time-varying state-dependent cyber-attack. ISA Transactions, 2019, 104: 212−221
    [6] Ding L, Han Q L, Ge X, Zhang X. An overview of recent advances in event-triggered consensus of multi-agent system. IEEE Transactions on Cybernetics, 2018, 48(4): 1110−1123 doi: 10.1109/TCYB.2017.2771560
    [7] Liu L, Wang D, Peng Z H, Li T S. Modular adaptive control for LOS-based cooperative path maneuvering of multiple under-actuated autonomous surface vehicles. IEEE Transactions on Systems, Man, and Cybernetics: Systems, 2017, 47: 1613−1624 doi: 10.1109/TSMC.2017.2650219
    [8] Wang H L, Wang D, Wang T L, Zhang Y B, Gu N. Adaptive cooperative diving of saucer-type underwater gliders subject to model uncertainties and input constraints. IEEE Access, 2019, 7: 60042−60054 doi: 10.1109/ACCESS.2019.2915160
    [9] Peng Z H, Liu L, Wang J. Output-feedback flocking control of multiple autonomous surface vehicles based on data-driven adaptive extended state observers. IEEE Transactions on Cybern-etics, 2020, 99: 4611−4622
    [10] 徐博, 白金磊, 郝燕玲, 高伟, 刘亚龙. 多AUV协同导航问题的研究现状与进展. 自动化学报, 2015, 41(3): 445−461 doi: 10.16383/j.aas.2015.c140047

    Xu Bo, Bai Jin-Lei, Hao Yan-Ling, Gao Wei, Liu Ya-Long. The research status and progress of cooperative navigation for multiple autonomous underwater vehicle. Acta Automatica Sinica, 2015, 41(3): 445−461 doi: 10.16383/j.aas.2015.c140047
    [11] Lal C, Petroccia R, Pelekanakis K, Conti M, Alves J. Toward the development of secure underwater acoustic networks. IEEE Journal of Oceanic Engineering, 2017, 42(4): 1075−1087 doi: 10.1109/JOE.2017.2716599
    [12] Wang Y T, Yao Y. Consensus path-following control of multi-ple under-actuated unmanned underwater vehicles. Complexity, 2018: 1−8
    [13] Peng Z H, Wang D, Wang J. Cooperative dynamic positioning of multiple marine offshore vessels: A modular design. IEEE/ASME Transactions on Mechatronics, 2016, 21(6): 1210−1221
    [14] Wang H L, Lu L, Dan W, Wang T L. Output-feedback control for cooperative diving of saucer-type underwater gliders based on a fuzzy observer and event-triggered communication. IEEE Access, 2019, 7: 50453−50465 doi: 10.1109/ACCESS.2019.2911194
    [15] Morales R, Sira-Ramírez H, Somolinos J A. Linear active disturbance rejection control of the hovercraft vessel model. Ocean Engineering, 2015, 96: 100−108 doi: 10.1016/j.oceaneng.2014.12.031
    [16] 吴文涛, 彭周华, 王丹, 刘陆, 姜继洲, 任帅. 基于扩张状态观测器的双桨推进无人艇抗干扰目标跟踪控制. 中国舰船研究, 2021, 16(1): 128−135 doi: 10.19693/j.issn.1673-3185.01665

    Wu Wen-Tao, Peng Zhou-Hua, Wang Dan, Liu Lu, Jiang Ji-Zhou, Ren Shuai. ESO based anti-disturbance target tracking control for twin-screw unmanned surface vehicle. Chinese Journal of Ship Research, 2021, 16(1): 128−135 doi: 10.19693/j.issn.1673-3185.01665
    [17] Gao Z Q. Active disturbance rejection control: A paradigm shift in feedback control system design. In: Proceedings of the American Control Conference. Minneapolis, USA: IEEE, 2006. 2399− 2405
    [18] Xue W C, Chen S, Zhao C, Huang Y, Su J B. On integrating uncertainty estimator into PI control for a class of nonlinear uncertain systems. IEEE Transactions on Automatic Control, 2021, 66(7): 3409−3416 doi: 10.1109/TAC.2020.3024475
    [19] Lu Y, Zhang G Q, Sun Z J, Zhang W D. Robust adaptive formation control of under-actuated autonomous surface vessels based on MLP and DOB. Nonlinear Dynamics, 2018, 94: 503− 519 doi: 10.1007/s11071-018-4374-z
    [20] Silvestre C, Cunha R, Paulino N, Pascoal A. A bottom-following preview controller for autonomous underwater vehicles. IEEE Transactions on Control Systems Technology, 2009, 17(2): 257−266 doi: 10.1109/TCST.2008.922560
    [21] Adhami-Mirhosseini A, Yazdanpanah M J, Aguiar A P. Automatic bottom-following for underwater robotic vehicles. Automatica, 2014, 50(8): 2155−2162 doi: 10.1016/j.automatica.2014.06.003
    [22] Pettersen K Y, Egeland O. Time-varying exponential stabilization of the position and attitude of an under-actuated autonomous underwater vehicle. IEEE Transactions on Automatic Control, 1999, 44(1): 112−115 doi: 10.1109/9.739086
    [23] Krstic M, Kanellakopoulos I, Kokotovic P. Nonlinear and Adaptive Control Design. New York: John Wiley & Sons Incorporated, 1995. 501−507
  • 加载中
图(10) / 表(1)
计量
  • 文章访问数:  1116
  • HTML全文浏览量:  458
  • PDF下载量:  252
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-12-07
  • 录用日期:  2022-06-23
  • 网络出版日期:  2022-09-26
  • 刊出日期:  2024-05-29

目录

    /

    返回文章
    返回