2.845

2023影响因子

(CJCR)

  • 中文核心
  • EI
  • 中国科技核心
  • Scopus
  • CSCD
  • 英国科学文摘

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

n比特随机量子系统实时状态估计及其反馈控制

张骄阳 丛爽 匡森

张骄阳, 丛爽, 匡森. n比特随机量子系统实时状态估计及其反馈控制. 自动化学报, 2024, 50(1): 42−53 doi: 10.16383/j.aas.c210916
引用本文: 张骄阳, 丛爽, 匡森. n比特随机量子系统实时状态估计及其反馈控制. 自动化学报, 2024, 50(1): 42−53 doi: 10.16383/j.aas.c210916
Zhang Jiao-Yang, Cong Shuang, Kuang Sen. Real-time state estimation and feedback control for n-qubit stochastic quantum systems. Acta Automatica Sinica, 2024, 50(1): 42−53 doi: 10.16383/j.aas.c210916
Citation: Zhang Jiao-Yang, Cong Shuang, Kuang Sen. Real-time state estimation and feedback control for n-qubit stochastic quantum systems. Acta Automatica Sinica, 2024, 50(1): 42−53 doi: 10.16383/j.aas.c210916

n比特随机量子系统实时状态估计及其反馈控制

doi: 10.16383/j.aas.c210916
基金项目: 国家自然科学基金(61973290)资助
详细信息
    作者简介:

    张骄阳:2020年获得中国海洋大学自动化专业学士学位, 2023年获得中国科学技术大学控制科学与工程专业硕士学位. 自2023年9月起为华中科技大学人工智能与自动化学院博士研究生. 主要研究方向为非线性与自适应控制, 随机控制, 量子信息与控制. E-mail: jyzhang_lemon@sina.com

    丛爽:中国科学技术大学自动化系教授. 1995年获得意大利罗马大学系统工程博士学位. 主要研究方向为运动控制中的先进控制策略, 模糊逻辑控制, 神经网络设计与应用, 机器人协调控制和量子系统控制. 本文通信作者. E-mail: scong@ustc.edu.cn

    匡森:中国科学技术大学自动化系副教授. 2007年获得中国科学技术大学控制理论与控制工程专业博士学位. 主要研究方向为量子信息与控制, 量子人工智能, 智能控制及其应用. E-mail: skuang@ustc.edu.cn

Real-time State Estimation and Feedback Control for n-qubit Stochastic Quantum Systems

Funds: Supported by National Natural Science Foundation of China (61973290)
More Information
    Author Bio:

    ZHANG Jiao-Yang Received his bachelor degree in automation and master degree in control science and engineering from Ocean University of China and University of Science and Technology of China, in 2020 and 2023, respectively. He has been a Ph.D. candidate at the School of Artificial Intelligence and Automation, Huazhong University of Science and Technology since September, 2023. His research interest covers nonlinear and adaptive control, stochastic control, and quantum information and control

    CONG Shuang Professor in the Department of Automation, University of Science and Technology of China. She received her Ph.D. degree in system engineering from the University of Rome “La Sapienza”, Italy, in 1995. Her research interest covers advanced control strategies for motion control, fuzzy logic control, neural networks design and applications, robotic coordination control, and quantum systems control. Corresponding author of this paper

    KUANG Sen Associate professor in the Department of Automation, University of Science and Technology of China. He received his Ph.D. degree in control theory and control engineering from University of Science and Technology of China in 2007. His research interest covers quantum information and control, quantum artificial intelligence, and intelligent control and its applications

  • 摘要: 研究了$n $比特随机量子系统实时状态估计及其反馈控制的问题. 对于连续弱测量(Continuous weak measurement, CWM)过程存在高斯噪声的情况, 基于在线交替方向乘子法(Online alternating direction multiplier method, OADM)推导出一种适用于$n $比特随机量子系统的实时量子状态估计算法, 即QSE-OADM (Quantum state estimation based on OADM). 运用李雅普诺夫方法设计控制律, 实现基于实时量子状态估计的反馈控制, 并证明所提控制律的收敛性. 以2比特随机量子系统为例进行数值仿真实验, 通过与基于QST-OADM (Quantum state tomography based on OADM)算法和OPG-ADMM (Online proximal gradient-based alternating direction method of multipliers)算法的量子反馈控制方案的性能对比, 验证了所提控制方案的优越性.
  • 图  1  不同外部控制场的作用下的实时状态估计性能

    Fig.  1  Real-time state estimation performance under various external control fields

    图  2  不同初始测量算符作用下的实时状态估计性能

    Fig.  2  Real-time state estimation performance under various initial measurement operators

    图  3  不同的相互作用强度作用下的实时状态估计性能

    Fig.  3  Real-time state estimation performance under various interaction strengths

    图  4  第30次采样时2比特量子系统估计状态与真实状态比较$( H' = {H_0} + {\;}1\cdot{\sigma _x} $, $ {M_1} = {\sigma _z} \otimes {\sigma _z} $, $ L' = {\;}0.7{\sigma _z}) $

    Fig.  4  Comparison between the estimated state and the real state of a 2-qubit system at the 30th sampling time $( H' = {H_0} + {\;}1\cdot{\sigma _x} $, $ {M_1} = {\sigma _z} \otimes {\sigma _z} $, $ L' = {\;}0.7{\sigma _z} )$

    图  5  基于实时状态估计的n比特随机量子系统反馈控制方案的框图

    Fig.  5  Real-time state estimation-based feedback control scheme for n-qubit stochastic quantum systems

    图  6  本征态反馈控制的仿真结果

    Fig.  6  Simulation results on feedback control of an eigenstate

    图  7  叠加态反馈控制的仿真结果

    Fig.  7  Simulation results on feedback control of a superposition state

    表  1  测量值序列的构造方法

    Table  1  Construction approach of the measurement record sequence

    $y_1$$y_2$$ \cdots $$y_k$
    $b_1$${\rm{tr}}(M_1^\dagger {\rho _1})$$ \cdots $
    $b_2$${\rm{tr}}(M_2^\dagger {\rho _2})$${\rm{tr}}(M_1^\dagger {\rho _2})$$ \cdots $
    $\vdots$$\vdots$$\vdots$$\ddots$$\vdots$
    $b_k$${\rm{tr}}(M_k^\dagger {\rho _k})$${\rm{tr}}(M_{k - 1}^\dagger {\rho _k})$$\cdots$${\rm{tr}}(M_1^\dagger {\rho _k})$
    下载: 导出CSV

    表  2  本征态反馈控制性能指标的对比

    Table  2  Comparison of performance indicators of feedback control of an eigenstate

    指标方案 1方案 2方案 3
    $k_{s1}$141825
    $k_{s2}$151828
    $Fidelity(30)$(%)99.8499.4098.29
    $V(30)$$5.399 \times {10^{ - 4}}$$1.484 \times {10^{ - 3}}$$6.312 \times {10^{ - 3}}$
    $J(30)$18.24728.72152.112
    下载: 导出CSV

    表  3  叠加态反馈控制性能指标的对比

    Table  3  Comparison of performance indicators of feedback control of a superposition state

    指标方案 1方案 2方案 3
    $k_{s1}$162229
    $k_{s2}$162533
    $Fidelity(40)$(%)99.9099.4098.30
    $V(40)$$1.651 \times {10^{ - 4}}$$6.180 \times {10^{ - 4}}$$2.854 \times {10^{ - 3}}$
    $J(40)$133.179133.880136.223
    下载: 导出CSV
  • [1] Huang G M, Tarn T J, Clark J W. On the controllability of quantum-mechanical systems. Journal of Mathematical Physics, 1983, 24(11): 2608-2618 doi: 10.1063/1.525634
    [2] Tesch C M, Kurtz L, Vivie-Riedle R D. Applying optimal control theory for elements of quantum computation in molecular systems. Chemical Physics Letters, 2001, 343(5-6): 633-641 doi: 10.1016/S0009-2614(01)00748-5
    [3] Nigmatullin R, Schirmer S G. Implementation of fault-tolerant quantum logic gates via optimal control. New Journal of Physics, 2009, 11(10): Article No. 105032 doi: 10.1088/1367-2630/11/10/105032
    [4] Nourallah G, Cong S. Preparation of Hadamard gate for open quantum systems by the Lyapunov control method. IEEE/CAA Journal of Automatica Sinica, 2018, 5(3): 733-740 doi: 10.1109/JAS.2018.7511084
    [5] Viola L, Lloyd S. Dynamical suppression of decoherence in two-state quantum systems. Physical Review A, 1998, 58(4): 2733-2744 doi: 10.1103/PhysRevA.58.2733
    [6] Zhang M, Ou B Q, Dai H Y, Hu D W. Control decoherence by quantum generalized measurement. Acta Automatica Sinica, 2008, 34(4): 433-437 doi: 10.3724/SP.J.1004.2008.00433
    [7] Dong D, Petersen I R. Quantum control theory and applications: A survey. IET Control Theory & Applications, 2009, 4(12): 2651-2671
    [8] 丛爽. 量子分子动力学中的操纵技术及其系统控制理论. 控制理论与应用, 2010, 27(1): 1-12

    Cong Shuang. Manipulation technology and system control theory in quantum molecular dynamics. Control Theory & Applications, 2010, 27(1): 1-12
    [9] Cong S. Control of Quantum Systems: Theory and Methods. Singapore: Wiley, 2014.
    [10] Dong W, Wu R, Yuan X, Li C, Tarn T J. The modelling of quantum control systems. Science Bulletin, 2015, 60(17): 1493-1508 doi: 10.1007/s11434-015-0863-3
    [11] Zhang J, Liu Y X, Wu R B, Jacobs K, Nori F. Quantum feedback: Theory, experiments, and applications. Physics Reports, 2017, 679: 1-60 doi: 10.1016/j.physrep.2017.02.003
    [12] D'Alessandro D. Introduction to Quantum Control and Dynamics. New York: Chapman & Hall/CRC, 2020.
    [13] Silberfarb A, Jessen P S, Deutsch I H. Quantum state reconstruction via continuous measurement. Physical Review Letters, 2005, 95(3): Article No. 030402
    [14] Smith G A, Silberfarb A, Deutsch I H, Jessen P S. Efficient quantum-state estimation by continuous weak measurement and dynamical control. Physical Review Letters, 2006, 97(18): Article No. 180403 doi: 10.1103/PhysRevLett.97.180403
    [15] Ralph J F, Jacobs K, Hill C D. Frequency tracking and parameter estimation for robust quantum state-estimation. Physical Review A, 2011, 84(5): 1398-1405
    [16] 唐雅茹, 丛爽, 杨靖北. 单量子比特系统状态的在线估计. 自动化学报, 2020, 46(8): 1592-1599 doi: 10.16383/j.aas.c180752

    Tang Ya-Ru, Cong Shuang, Yang Jing-Bei. On-line state estimation of one-qubit system. Acta Automatica Sinica, 2020, 46(8): 1592-1599 doi: 10.16383/j.aas.c180752
    [17] Harraz S, Cong S, Li K. Online quantum state tomography of N-qubit via continuous weak measurement and compressed sensing. International Journal of Quantum Information, 2020: Article No. 2040006
    [18] Zhang K, Cong S, Li K, Wang T. An online optimization algorithm for the real-time quantum state tomography. Quantum Information Processing, 2020, 19(10): Article No. 361 doi: 10.1007/s11128-020-02866-4
    [19] Zhang K, Cong S, Tang Y, Freris N M. An efficient online estimation algorithm for evolving quantum states. In: Proceedings of the European Signal Processing Conference (EUSIPCO). Amsterdam, the Netherlands: IEEE, 2020. 2249−2253
    [20] Kuang S, Cong S. Lyapunov control methods of closed quantum systems. Automatica, 2008, 44(1): 98-108 doi: 10.1016/j.automatica.2007.05.013
    [21] Sayrin C, Dotsenko I, Zhou X, Peaudecerf B, Rybarczyk T, Gleyzes S, et al. Real-time quantum feedback prepares and stabilizes photon number states. Nature, 2011, 477(7362): 73-77 doi: 10.1038/nature10376
    [22] Qi B, Guo L. Is measurement-based feedback still better for quantum control systems? Systems & Control Letters, 2010, 59(6): 333-339
    [23] Qi B, Pan H, Guo L. Further results on stabilizing control of quantum systems. IEEE Transactions on Automatic Control, 2013, 58(5): 1349-1354 doi: 10.1109/TAC.2012.2224252
    [24] Qamar S, Cong S. Observer-based feedback control of two-level open stochastic quantum system. Journal of the Franklin Institute, 2019, 356(11): 5675-5691 doi: 10.1016/j.jfranklin.2019.05.021
    [25] Harraz S, Cong S. State transfer via on-line state estimation and Lyapunov-based feedback control for a N-qubit system. Entropy, 2019, 21(8): Article No. 751 doi: 10.3390/e21080751
    [26] 丛爽, 胡龙珍, 杨霏, 刘建秀. Non-Markovian开放量子系统的特性分析与状态转移. 自动化学报, 2013, 39(4): 360-370 doi: 10.1016/S1874-1029(13)60035-X

    Cong Shuang, Hu Long-Zhen, Yang Fei, Liu Jian-Xiu. Characteristics analysis and state transfer for Non-Markovian open quantum systems. Acta Automatica Sinica, 2013, 39(4): 360-370 doi: 10.1016/S1874-1029(13)60035-X
    [27] Bosse J, Rabaste O. Subspace rejection for matching pursuit in the presence of unresolved targets. IEEE Transactions on Signal Processing, 2018, 66(8): 1997-2010 doi: 10.1109/TSP.2018.2795572
    [28] 张贤达. 矩阵分析与应用. 北京: 清华大学出版社, 2013.

    Zhang Xian-Da. Matrix Analysis and Applications. Beijing: Tsinghua University Press, 2013.
    [29] Ge S S, Vu T L, Hang C C. Non-smooth Lyapunov function-based global stabilization for quantum filters. Automatica, 2012, 48(6): 1031-1044 doi: 10.1016/j.automatica.2012.03.001
  • 加载中
图(7) / 表(3)
计量
  • 文章访问数:  608
  • HTML全文浏览量:  212
  • PDF下载量:  148
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-09-26
  • 录用日期:  2022-06-06
  • 网络出版日期:  2022-07-18
  • 刊出日期:  2024-01-29

目录

    /

    返回文章
    返回