2.624

2020影响因子

(CJCR)

  • 中文核心
  • EI
  • 中国科技核心
  • Scopus
  • CSCD
  • 英国科学文摘

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于扩展PI抗扰补偿器的高精度时间同步控制

代学武 贾志安 崔东亮 柴天佑

代学武, 贾志安, 崔东亮, 柴天佑. 基于扩展PI抗扰补偿器的高精度时间同步控制. 自动化学报, 2022, 48(x): 1−12 doi: 10.16383/j.aas.c210676
引用本文: 代学武, 贾志安, 崔东亮, 柴天佑. 基于扩展PI抗扰补偿器的高精度时间同步控制. 自动化学报, 2022, 48(x): 1−12 doi: 10.16383/j.aas.c210676
Dai Xue-Wu, Jia Zhi-An, Cui Dong-Liang, Chai Tian-You. Precision time synchronization by extended PI disturbance compensator. Acta Automatica Sinica, 2022, 48(x): 1−12 doi: 10.16383/j.aas.c210676
Citation: Dai Xue-Wu, Jia Zhi-An, Cui Dong-Liang, Chai Tian-You. Precision time synchronization by extended PI disturbance compensator. Acta Automatica Sinica, 2022, 48(x): 1−12 doi: 10.16383/j.aas.c210676

基于扩展PI抗扰补偿器的高精度时间同步控制

doi: 10.16383/j.aas.c210676
基金项目: 国家自然科学基金(61773111, 61790574,61991400,61991404), 黑龙江省“百千万“工程科技重大专项(2020ZX03A02),2020年度辽宁省科技重大专项计划(2020JH1/10100008)资助
详细信息
    作者简介:

    代学武:东北大学流程工业综合自动化国家重点实验室教授. 目前主要研究多智能体系统的同步, 网络化控制与智能调度协同优化, 鲁棒状态估计和状态监测, 及其在工业物联网高精度时间同步、轨道交通调度控制一体化等领域的应用. 本文通讯作者. E-mail: daixuewu@mail.neu.edu.cn

    贾志安:东北大学流程工业综合自动化国家重点实验室硕士研究生. 于2020年获得合肥工业大学学士学位, 主要研究方向为抗扰控制、时间同步和网络化系统控制. E-mail: hfutjiazhian@163com

    崔东亮:分别于1999年、2001年获得华中科技大学学士学位和硕士学位, 2013年获得东北大学博士学位. 现为东北大学流程工业综合自动化国家重点实验室讲师, 主要研究方向为工业互联网与人工智能. E-mail: cuidongliang@mail.neu.edu.cn

    柴天佑:中国工程院院士, 东北大学教授.IEEE Fellow, IFAC Fellow. 主要研究方向为自适应控制, 智能解耦控制, 流程工业综合自动化理论、方法与技术. E-mail: tychai@mail.neu.edu.cn

Precision Time Synchronization by Extended PI Disturbance Compensator

Funds: Supported by the National Natural Science Foundation of China (61773111, 61790574, 61991400, 61991404), the Key Science and Technology Project of Heilongjiang Province (2020ZX03A02), and Science and Technology Major Project 2020 of Liaoning Province (2020JH1/10100008)
More Information
    Author Bio:

    DAI Xue-Wu Professor at the State Key Laboratory of Synthetical Automation for Process Industries at Northeastern University. His interests include networked scheduling and control, robust state estimation and condition monitoring of industrial systems, wireless sensor actuator networks, and their applications to Industrial Internet of Things and railway train rescheduling. Corresponding author of this paper

    JIA Zhi-An Master student at the State Key Laboratory of Synthetical Automation for Process Industries, Northeastern University. He received the B.S. degree from Hefei University of Technology in 2020. His research interest covers disturbance control, time synchronization and networked control systems

    CUI Dong-Liang received his B.SC., M.SC. degrees from Huazhong University of Science and Technology in 1999 and 2001, received his Ph.D. degree from Northeastern University in 2013. Now he is a lecturer in State Key Laboratory of Synthetical Automation for Process Industries, Northeastern University. His main research interests include Industrial Internet of things (IIOT) and Artificial Intelligence (AI)

    CHAI Tian-You Academician of Chinese Academy of Engineering, professor at Northeastern University, IEEE Fellow, IFAC Fellow. His research interest covers adaptive control, intelligent decoupling control, and integrated automation thoery, method and technology of industrial process

  • 摘要: 高精度时间同步是任务关键型工业网络控制系统的核心支撑技术, 针对工业环境中普遍存在周期性振动等扰动信号导致晶振频率漂移, 影响时间同步精度的问题, 本文基于扩展比例积分(Proportional Integral, $ \mathrm{P}\mathrm{I} $)观测器, 提出了一种新型的抗扰补偿器结构, 用于消除周期性扰动的影响, 并构建了相应的精细抗干扰反馈控制方法, 用于实现高精度时间同步. 与传统的扰动观测器相比, 所提出的扩展$ \mathrm{P}\mathrm{I} $抗扰补偿器克服了传统扰动观测器零点不变局限性, 提出了零点配置方法, 以充分利用闭环系统的传递函数矩阵(Transfer Function Matrix, TFM)在系统零点处降秩的特性, 实现了对于特定频率扰动信号的补偿作用. 并给出了所提出的控制器和抗扰补偿器的稳定性证明和控制器参数的稳定域. 通过基于实测参数的无线网络仿真实验, 验证了在$ 5\mathrm{g} $周期性振动干扰下, 本文提出的方法明显优于传统滤波器和补偿器, 达到了同步误差在4 $ \mu s $以内, 实现了高精度时间同步.
  • 图  1  时间戳包交换获取时钟偏差示意图

    Fig.  1  Time offset measurement by time-stamped packet switching

    图  2  基于抗扰补偿器的时间同步系统框图

    Fig.  2  Block diagram of the time synchronization system with the disturbance compensator

    图  3  扩展PI抗扰补偿器结构图

    Fig.  3  Structure of the proposed extended PI disturbance compensators

    图  4  自由时钟偏差$ \theta $的变化曲线

    Fig.  4  Clock offset $ \theta $ of a free clock

    图  5  自由时钟频率偏斜$ \chi \left(k\right) $的变化曲线

    Fig.  5  A free drifting clock’s frequency skew $ \chi \left(k\right) $

    图  6  时钟偏差信号的频谱图

    Fig.  6  FFT of the clock offsets

    图  7  时钟偏差$ \theta $的收敛曲线

    Fig.  7  Convergence of clock offset $ \theta $ of different synchronization methods

    图  8  稳态同步误差的对比图

    Fig.  8  Comparison of the steady-state synchronization errors

    图  9  同步误差$ \theta $幅频特性对比图

    Fig.  9  Specturm comparison of the synchronization error $ \theta $ in different synchronization methods

  • [1] Zong Y, Dai X, Gao Z. Proportional-integral synchronisation for non-identical wireless packet-coupled oscillators with delays. IEEE Transactions on Industrial Electronics, 2021, 68(11): 11598-11608 doi: 10.1109/TIE.2020.3036228
    [2] Elsts A, Fafoutis X, Duquennoy S, et al. Temperature-resilient time synchronization for the internet of things. IEEE Transactions on Industrial Informatics, 2018, 14(5): 2241-2250 doi: 10.1109/TII.2017.2778746
    [3] Elson J. Fine-grained network time synchronization using reference broadcasts. ACM SIGOPS Operating Systems Review, 2003, 36(S1): 147-163
    [4] Giorgi G, Narduzzi C. Performance analysis of kalman-filter-based clock synchronization in IEEE 1588 networks. IEEE Transactions on Instrumentation and Measurement, 2011, 60(8): 2902-2909 doi: 10.1109/TIM.2011.2113120
    [5] Miklós Maróti, Kusy B, Simon G, Simon G, Ledeczi A. The flooding time synchronization protocol. In: Proceedings of International Conference on Embedded Network Sensor System, DBLP, 2004
    [6] 孙子文, 吴梦芸, 白勇. 基于多参考节点的WSN时间同步方法. 控制工程, 2016, 23(01): 12-17

    Sun Zi-Wen, Wu Meng-Yun, Bai Yong. A time synchronization method for WSN based on multiple reference nodes, Control Engineering of China, 2016, 23(01): 12-17
    [7] Wang H, Yu F, Li M, Zhong Y. Clock skew estimation for timestamp-free synchronization in industrial wireless sensor networks, IEEE Transactions on Industrial Informatics, 2021, 60(8): 2902–2909
    [8] Yang T, Y Niu, Yu J. Clock synchronization in wireless sensor networks based on bayesian estimation. IEEE Access, 2020, 8: 69683-69694 doi: 10.1109/ACCESS.2020.2984785
    [9] Carli R, Chiuso A, Schenato L, Zampieri S. Optimal synchronization for networks of noisy double integrators. IEEE Transactions on Automatic Control, 2011, 56(5): 1146-1152 doi: 10.1109/TAC.2011.2107051
    [10] Yildirim K S. Gradient descent algorithm inspired adaptive time synchronization in wireless sensor networks. IEEE Sensors Journal, 2016, 16(13): 5463-5470 doi: 10.1109/JSEN.2016.2555996
    [11] Yildirim K S, Carli R, Schenato L. Adaptive proportional-integral clock synchronization in wireless sensor networks. IEEE Transactions on Control Systems Technology, 2018, 26(2): 610-623 doi: 10.1109/TCST.2017.2692720
    [12] Filler R L. The effect of vibration on quartz crystal resonators. Nasa Sti/recon Technical Report N, 1980
    [13] 杨东岳, 梅杰. 有向图中基于扰动观测器的线性多智能体系统一致性. 自动化学报, 2018, 44(6): 1037−1044

    Yang Dong-Yue, Mei Jie. Disturbance observer based consensus of linear multi-agent systems under a directed graph. Acta Automatica Sinica, 2018, 44(6): 1037−1044
    [14] Zhou K, Zhang R. A new controller architecture for high performance, robust, and fault-tolerant control. IEEE Transactions on Automatic Control, 2001, 46(10): 1613-1618 doi: 10.1109/9.956059
    [15] Wang D, Qiao J and Cheng L. An approximate neuro-optimal solution of discounted guaranteed cost control design. IEEE Transactions on Cybernetics, to be published
    [16] F Ye, Sun B, Ou L, Zhang W. Disturbance observer-based control for consensus tracking of multi-agent systems with input delays from a frequency domain perspective. Systems & Control Letters, 2018, 114: 66-75
    [17] Chen W H, Yang J, Guo L, Li S H. Disturbance-observer-based control and related methods—an overview. IEEE Transactions on Industrial Electronics, 2016, 63(2): 1083-1095 doi: 10.1109/TIE.2015.2478397
    [18] 韩京清. 自抗扰控制器及其应用. 控制与决策, 1998, 13(1): 19–23 doi: 10.3321/j.issn:1001-0920.1998.01.005

    Han Jing-Qing. Auto-disturbances-rejection controller and It’s applications. Control and Decision, 1998, 13(1): 19–23 doi: 10.3321/j.issn:1001-0920.1998.01.005
    [19] 王怡怡, 赵志良. 二自由度无人直升机的非线性自抗扰姿态控制. 自动化学报, 2021, 47(8): 1951-1962

    Wang Yi-Yi, Zhao Zhi-Liang. Nonlinear active disturbance rejection attitude control of two-DOF unmanned helicopter. Acta Automatica Sinica, 2021, 47(8): 1951-1962
    [20] Gao Z. Scaling and bandwidth-parameterization based controller tuning. In: Proceedings of 2003 American Control Conference. Denver, CO, USA, 2003: 4989–4996
    [21] Dai X, Gao Z, Breikin T, Wang H. Zero assignment for robust H2/H∞ fault detection filter design. IEEE Transactions on Signal Processing, 2009, 57(4): 1363-1372 doi: 10.1109/TSP.2008.2010598
    [22] Galleani, Lorenzo. A tutorial on the two-state model of the atomic clock noise. Metrologia, 2008, 45(6): S175-S182. doi: 10.1088/0026-1394/45/6/S23
    [23] Kulpinski R J. Minimum variance methods for synchronization of airborne clocks. In: Proceedings of 30th Annual Symposium on Frequency Control. IEEE, 1976: 401-413.
    [24] Lévesque M, Tipper D. A survey of clock synchronization over packet-switched networks. IEEE Communications Surveys & Tutorials, 2016, 18(4): 2926-2947
    [25] Silvester J R. Determinants of Block Matrices. Mathematical Gazette, 2000, 84(501): 460-467 doi: 10.2307/3620776
    [26] Schriegel S, Jasperneite J. Investigation of industrial environmental influences on clock sources and their effect on the synchronization accuracy of IEEE 1588. In: Proceedings of IEEE International Symposium on Precision Clock Synchronization for Measurement, IEEE, 2007: 50-55
  • 加载中
计量
  • 文章访问数:  220
  • HTML全文浏览量:  88
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-07-19
  • 录用日期:  2021-12-06
  • 网络出版日期:  2022-03-27

目录

    /

    返回文章
    返回