2.845

2023影响因子

(CJCR)

  • 中文核心
  • EI
  • 中国科技核心
  • Scopus
  • CSCD
  • 英国科学文摘

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

面向飞行目标的多传感器协同探测资源调度方法

汪梦倩 梁皓星 郭茂耘 陈小龙 武艺

汪梦倩, 梁皓星, 郭茂耘, 陈小龙, 武艺. 面向飞行目标的多传感器协同探测资源调度方法. 自动化学报, 2023, 49(6): 1242−1255 doi: 10.16383/j.aas.c210498
引用本文: 汪梦倩, 梁皓星, 郭茂耘, 陈小龙, 武艺. 面向飞行目标的多传感器协同探测资源调度方法. 自动化学报, 2023, 49(6): 1242−1255 doi: 10.16383/j.aas.c210498
Wang Meng-Qian, Liang Hao-Xing, Guo Mao-Yun, Chen Xiao-Long, Wu Yi. Resource scheduling method of multi-sensor cooperative detection for flying targets. Acta Automatica Sinica, 2023, 49(6): 1242−1255 doi: 10.16383/j.aas.c210498
Citation: Wang Meng-Qian, Liang Hao-Xing, Guo Mao-Yun, Chen Xiao-Long, Wu Yi. Resource scheduling method of multi-sensor cooperative detection for flying targets. Acta Automatica Sinica, 2023, 49(6): 1242−1255 doi: 10.16383/j.aas.c210498

面向飞行目标的多传感器协同探测资源调度方法

doi: 10.16383/j.aas.c210498
详细信息
    作者简介:

    汪梦倩:重庆大学自动化学院硕士研究生. 2018年获得武汉工程大学学士学位. 主要研究方向为任务调度, 机器学习. E-mail: 201813131064@cqu.edu.cn

    梁皓星:重庆大学自动化学院硕士研究生. 2017年获得重庆大学学士学位. 主要研究方向为任务调度, 机器学习. E-mail: lianghaoxing841@gmail.com

    郭茂耘:重庆大学自动化学院副教授. 2011年获得重庆大学博士学位. 主要研究方向为信息融合, 决策支持和系统仿真. 本文通信作者. E-mail: gmy@cqu.edu.cn

    陈小龙:重庆大学自动化学院助理研究员. 主要研究方向为系统辨识, 软测量建模和机器学习. E-mail: xiaolong.chen@cqu.edu.cn

    武艺:重庆大学自动化学院硕士研究生. 2017年获得重庆大学学士学位. 主要研究方向为资源调度. E-mail: 201713021031@cqu.edu.cn

Resource Scheduling Method of Multi-sensor Cooperative Detection for Flying Targets

More Information
    Author Bio:

    WANG Meng-Qian Master student at the School of Automation, Chongqing University. She received her bachelor degree from Wuhan Institute of Technology in 2018. Her research interest covers task scheduling and machine learning

    LIANG Hao-Xing Master student at the School of Automation, Chongqing University. He received his bachelor degree from Chongqing University in 2017. His research interest covers task scheduling and machine learning

    GUO Mao-Yun Associate professor at the School of Automation, Chongqing University. He received his Ph.D. degree from Chongqing University in 2011. His research interest covers information fusion, decision support, and system simulation. Corresponding author of this paper

    CHEN Xiao-Long Associate professor at the School of Automation, Chongqing University. His research interest covers system identification, soft sensor modeling, and machine learning

    WU Yi Master student at the Sch-ool of Automation, Chongqing University. She received her bachelor degree from Chongqing University in 2017. Her main research interest is scheduling of resources

  • 摘要: 针对飞行目标机动性带来的多传感器协同探测资源调度动态性需求, 提出一种新的基于近端策略优化(Proximal policy optimization, PPO)与全连接神经网络结合的多传感器协同探测资源调度算法. 首先, 分析影响多传感器协同探测资源调度的复杂约束条件, 形成评价多传感器协同探测资源调度过程指标; 然后, 引入马尔科夫决策过程(Markov decision process, MDP)模拟多传感器协同探测资源调度过程, 并为提高算法稳定性, 将Adam算法与学习率衰减算法结合, 控制学习率调整步长; 最后, 基于改进近端策略优化与全卷积神经网络结合算法求解动态资源调度策略, 并通过对比实验表明该算法的优越性.
  • 图  1  多传感器探测资源调度过程中复杂约束条件

    Fig.  1  Complex constraints in the process of multi-sensor resources schedule

    图  2  多传感器资源调度时序决策

    Fig.  2  Multi-sensor resources scheduling sequential decision-making

    图  3  $t$时刻传感器动作空间

    Fig.  3  Action space of sensors at $t$ moment

    图  4  全连接神经网络结构图

    Fig.  4  Structure of fully connected neural network

    图  5  基于改进PPO-FCNN的多传感器协同探测资源调度算法训练示意图

    Fig.  5  Training algorithm for multi-sensor cooperative detection resource scheduling based on improved PPO-FCNN

    图  6  基于改进PPO-FCNN的多传感器协同探测资源动态调度算法流程

    Fig.  6  Process of multi-sensor cooperative detection dynamic scheduling based on improved PPO-FCNN

    图  7  评价指标层次结构模型

    Fig.  7  Hierarchical model of evaluation indexs

    图  8  面向不同传感器数量的不同算法训练效果

    Fig.  8  Training effects of different algorithms for different sensor numbers

    图  9  面向不同传感器数量的收敛时间对比

    Fig.  9  Comparison of convergence time for different sensor numbers

    表  1  各层次神经网络参数

    Table  1  Parameters of neural network at various layers

    层次名 隐元个数 激活函数
    FCCN_1 100 ReLU
    FCCN_2 200 ReLU
    FCCN_3 200 Tanh
    FCCN_4 200 Tanh
    Softmax $num$ Softmax
    下载: 导出CSV

    表  2  仿真参数设置

    Table  2  Simulation parameters

    参数配置 数值
    Actor学习率 0.0001
    Critic学习率 0.0002
    衰减因子 0.9
    最小样本数 64
    更新间隔 10 次
    裁剪函数参数$\varepsilon$ 0.2
    下载: 导出CSV

    表  3  飞行目标状态参数

    Table  3  Parameters of flight target status

    飞行目标参数 取值范围
    横坐标$x_2^{(t)}$ 97 ~ 30
    纵坐标$y_2^{(t)}$ 814 ~ 348
    高度$z_2^{(t)}$ 168 ~ 400
    下载: 导出CSV

    表  4  第$i$号探测设备状态参数

    Table  4  Status parameters of No. $i$ detection equipment

    第$i$号探测设备参数 取值
    通视性$vis_{i,t}$ 1或0
    最大探测范围$Dis_i^{Max}$ 0 ~ 400
    最大可工作时长$Store_i^{Max}$ 20
    最大切换次数$ht$ 12
    优先级$pre_{i,t}$ 1或0
    下载: 导出CSV

    表  5  传感器约束层次总排序表

    Table  5  Hierarchical sorting summary for constraints of sensors

    约束分类 权重 复杂约束 权重 $ {\alpha _1} $ $ {\alpha _2} $
    $ {\beta _1} $ $ {\beta _2} $ $ {\beta _3} $ $ {\beta _4} $ $ {\beta _5} $
    单传感器约束 0.5 探测性能约束 0.5 0.4 0.4 0.2 0 0 0
    探测效率约束 0.5 0 0 0.5 0.5 0 0
    多传感器约束 0.5 关联约束 1.0 0 0 0 0 0 1.0
    层次总排序 0.1 0.1 0.05 0.125 0.125 0.5
    下载: 导出CSV

    表  6  随机一致性指标

    Table  6  Random consistent index

    $ n $ ${\rm{RI}}$
    1 0
    2 0
    3 0.58
    4 0.90
    5 1.12
    6 1.24
    7 1.32
    8 1.41
    9 1.45
    下载: 导出CSV

    表  7  不同算法训练至收敛的迭代次数

    Table  7  Iteration numbers of training to convergence for different algorithms

    场景 改进PPO-FCNN PPO-FCNN DQN 遗传算法
    面向10个传感器 10300 7133 38000 29000
    面向15个传感器 10000 10712 42000 33000
    面向20个传感器 10418 1935 26000 28000
    下载: 导出CSV

    表  8  改进PPO-FCNN面向不同传感器数量的收敛时间幅度对比(%)

    Table  8  Comparison of convergence time amplitude of improved PPO-FCNN for different sensor numbers (%)

    场景 PPO-FCNN DQN 遗传算法
    面向10个传感器 39.00 –68.90 –59.10
    面向15个传感器 –0.06 –72.30 –62.90
    面向20个传感器 4.10 –54.15 –56.30
    下载: 导出CSV
  • [1] 韩志钢, 卿利. 多节点传感器协同探测技术综述与展望. 电讯技术, 2020, 60(3): 358—364 doi: 10.3969/j.issn.1001-893x.2020.03.020

    Han Zhi-Gang, Qing Li. Overview and prospect of cooperative detection technology for multi-node's sensors. Telecommunication Engineering, 2020, 60(3): 358—364 doi: 10.3969/j.issn.1001-893x.2020.03.020
    [2] 范成礼, 付强, 宋亚飞. 临空高速目标多传感器自主协同资源调度算法. 军事运筹与系统工程, 2018, 32(4): 45—50 doi: 10.3969/j.issn.1672-8211.2018.04.010

    Fan Cheng-Li, Fu Qiang, Song Ya-Fei. Multi sensor autonomous collaborative resource scheduling algorithm for high-speed target in the air. Military Operations Research and Systems Engineering, 2018, 32(4): 45—50 doi: 10.3969/j.issn.1672-8211.2018.04.010
    [3] 高嘉乐, 邢清华, 梁志兵. 空天高速目标探测跟踪传感器资源调度模型与算法. 系统工程与电子技术, 2019, 41(10): 2243—2251 doi: 10.3969/j.issn.1001-506X.2019.10.13

    Gao Jia-Le, Xing Qing-Hua, Liang Zhi-Bing. Multiple sensor resources scheduling model and algorithm for high speed target tracking in aerospace. System Engineering and Electronics, 2019, 41(10): 2243—2251 doi: 10.3969/j.issn.1001-506X.2019.10.13
    [4] 徐伯健, 李昌哲, 卜德锋, 符京杨. 基于多目标规划的GNSS地面站任务资源优化. 无线电工程, 2016, 46(7): 45—48 doi: 10.3969/j.issn.1003-3106.2016.07.12

    Xu Bo-Jian, Li Chang-Zhe, Bu De-Feng, Fu Jing-Yang. Optimization of GNSS ground station task resources based on multi-objective programming. Radio Engineering, 2016, 46(07): 45—48 doi: 10.3969/j.issn.1003-3106.2016.07.12
    [5] 陈明, 周云龙, 刘晋飞, 靳文瑞. 基于MDP的多Agent生产线动态调度策略. 机电一体化, 2017, 23(11): 15—19, 56 doi: 10.16413/j.cnki.issn.1007-080x.2017.11.003

    Chen Ming, Zhou Yun-Long, Liu Jin-Fei, Jin Wen-Rui. Dynamic scheduling strategy of multi-agent productionLine based on MDP. Mechatronics, 2017, 23(11): 15—19, 56 doi: 10.16413/j.cnki.issn.1007-080x.2017.11.003
    [6] Wei W, Fan X, Song H, Fan X, Yang J. Imperfect information dynamic stackelberg game based resource allocation using hidden Markov for cloud computing. IEEE Transactionson Services Computing, 2018, 11(99): 78—89
    [7] Afzalirad M, Shafipour M. Design of an efficient genetic algorithm for resource constrained unrelated parallel machine scheduling problem with machine eligibility restrictions. Journal of Intelligent Manufacturing, 2018: 1—15
    [8] Asghari A, Sohrabi M K, Yaghmaee F. Task scheduling, resource provisioning and load balancing on scientific workflows using parallel SARSA reinforcement learning agents and genetic algorithm. The Journal of Supercomputing, 2020: 1—29
    [9] 孙长银, 穆朝絮. 多智能体深度强化学习的若干关键科学问题. 自动化学报, 2020, 46(7): 1301—1312 doi: 10.16383/j.aas.c200159

    Sun Chang-Yin, Mu Chao-Xu. Important scientific problems of multi-agent deep reinforcement learning. Acta Automatica Sinica, 2020, 46(7): 1301—1312 doi: 10.16383/j.aas.c200159
    [10] 梁星星, 冯旸赫, 马扬, 程光权, 黄金才, 王琦, 等. 多Agent深度强化学习综述. 自动化学报, 2020, 46(12): 2537—2557 doi: 10.16383/j.aas.c180372

    Liang Xing-Xing, Feng Yang-He, Ma Yang, Cheng Guang-Quan, Huang Jin-Cai, Wang Qi, et al. Deep multi-agent reinforcement learning: A survey. Acta Automatica Sinica, 2020, 46(12): 2537—2557 doi: 10.16383/j.aas.c180372
    [11] Mnih V, Kavukcuoglu K, Silver D, Rusu A A, Veness J, Bellemare M G, et al. Human-level control through deep reinforcement learning. Nature, 2015, 518(7540): 529—533 doi: 10.1038/nature14236
    [12] Volodymyr M, Koray K, David S, Alex G, Ioannis A, Daan W, et al. Playing Atari with deep reinforcement learning [Online], available: https://arxiv.org, December 19, 2013
    [13] Hado V H, Arthur G, David S. Deep reinforcement learning with double Q-learning [Online], available: https://arxiv.org, December 8, 2015
    [14] John S, Sergey L, Philipp M, Michael I J, Pieter A. Trust region policy optimization [Online], available: https://arxiv.org, April 20, 2017
    [15] Wu Y H, Elman M, Shun L, Roger G, Jimmy B. Scaleable trust-region method for deep reinforcement learning using Kronecker-factored approximate [Online], available: https://arxiv.org, August 18, 2017
    [16] Nicolas H, Dhruva T B, Srinivasan S, Jay L, Josh M, Greg W, et al. Emergence of locomotion behaviours in rich environments [Online], available: http://www.arXiv.org, July 10, 2017
    [17] Gao J L, Ye W J, Guo J, Li Z J. Deep reinforcement learning for indoor mobile robot path planning. Sensors, 2020, 20(19): 5493 doi: 10.3390/s20195493
    [18] Shi X G, Timothy L, Ilya S, Sergey L. Continuous deep Q-learning with model-based acceleration [Online], available: http://www.arXiv.org, May 2, 2016
    [19] Timothy P L, Jonathan J H, Alexander P, Nicolas H, Tom E, Yuval T, et al. Continuous control with deep reinforcement learning [Online], available: http://www.arXiv.org, July 5, 2019
    [20] Zhan Y F, Guo S, Li P, Zhang J. A Deep reinforcement learning based offloading game in edge computing. IEEE Transactions on Computers, 2020, 69(6): 883—893 doi: 10.1109/TC.2020.2969148
    [21] Gaudet B, Linares R, Furfaro R. Deep reinforcement learning for six degree-of–freedom planetary landing. Advances in Space Research, 2020, 65(7): 1723—1741 doi: 10.1016/j.asr.2019.12.030
    [22] Tang F, Zhou Y, Kato N. Deep reinforcement learning for dynamic uplink/downlink resource allocation in high mobility 5G hetnet. IEEE Journal on Selected Areas in Communications, 2020, 38(12): 2773—2782 doi: 10.1109/JSAC.2020.3005495
    [23] 周飞燕, 金林鹏, 董军. 卷积神经网络研究综述. 计算机学报, 2017, 40(06): 1229—251 doi: 10.11897/SP.J.1016.2017.01229

    Zhou Fei-Yan, Jin Lin-Peng, Dong Jun. A review of convolutional neural networks. Journal of Computer Science, 2017, 40(06): 1229—251 doi: 10.11897/SP.J.1016.2017.01229
    [24] 马丁 T. 哈根, 霍华德 B. 德姆斯, 马克 H. 比乐. 神经网络设计. 北京: 机械工业出版社, 2002. 78−89

    Martin T. Hagen, Howard B. Demuth, Mark H. Beale. Neural Network Design. Beijing: China Machine Press, 2002. 78−89
    [25] 董晨, 刘兴科, 周金鹏, 陆志沣. 导弹防御多传感器协同探测任务规划. 现代防御技术, 2018, 46(6): 57—63 doi: 10.3969/j.issn.1009-086x.2018.06.009

    Dong Chen, Liu Xing-Ke, Zhou Jin-Peng, Lu Zhi-Pei. Cooperative detection task programming of multi sensor for ballistic missile defense. Modern Defense Technology, 2018, 46(6): 57—63 doi: 10.3969/j.issn.1009-086x.2018.06.009
    [26] 倪鹏, 王刚, 刘统民, 孙文. 反导作战多传感器任务规划技术. 火力与指挥控制, 2017, 42(8): 1—5 doi: 10.3969/j.issn.1002-0640.2017.08.001

    Ni Peng, Wang Gang, Liu Tong-Min, Sun Wen. Research on layered decision-making of multi-sensors planning based on heterogeneous MAS in anti-TBM combat. Fire Control and Command Control, 2017, 42(8): 1—5 doi: 10.3969/j.issn.1002-0640.2017.08.001
    [27] 李志汇, 刘昌云, 倪鹏, 于洁, 李松. 反导多传感器协同任务规划综述. 宇航学报, 2016, 37(1): 29—38

    Li Zhi-Hui, Liu Chang-Yun, Ni Peng, Yu Jie, Li song. Review on multisensor cooperative mission planning in anti-TBM System. Joumal of Astronautics, 2016, 37(1): 29—38
    [28] 唐俊林, 张栋, 王玉茜, 刘莉. 防空作战多传感器任务规划算法设计. 无人系统技术, 2019, 2(5): 46—55 doi: 10.19942/j.issn.2096-5915.2019.05.007

    Tang Jun-Lin, Zhang Dong, Wang Yu-Qian, Liu Li. Research on multi-sensor task planning algorithms for air defense operations. Unmanned System Technology, 2019, 2(5): 46—55 doi: 10.19942/j.issn.2096-5915.2019.05.007
    [29] 谢红卫, 张明. 航天测控系统. 北京: 国防科技大学出版社, 2000. 100−109

    Xie Hong-Wei, Zhang Ming. Space TT&C System. Beijing: National University of Defense Technology Press, 2000. 100−109
    [30] 郭茂耘. 航天发射安全控制决策的空间信息分析与处理研究 [博士论文], 重庆大学, 中国, 2011

    Guo Mao-Yun. Study on Spatial Information Analysis and Processing of the Dicision-making for Launching Safety Control [Ph.D. dissertation], Chongqing University, China, 2011
    [31] 梁皓星. 基于深度强化学习的飞行目标探测传感器资源调度方法研究 [硕士论文], 重庆大学, 中国, 2020

    Liang Hao-Xing. Research on Flight Target Detection Sensor Resource Scheduling Method Based on Deep Reinforcement Learning [Master thesis], Chongqing University, China, 2020
    [32] 刘建伟, 高峰, 罗雄麟. 基于值函数和策略梯度的深度强化学习综述. 计算机学报, 2019, 42(6): 1406—1438 doi: 10.11897/SP.J.1016.2019.01406

    Liu Jian-Wei, Gao Feng, Luo Xiong-Lin. Survey of deep reinforcement learning based on value function and policy gradient. Chinese Journal of Computers, 2019, 42(6): 1406—1438 doi: 10.11897/SP.J.1016.2019.01406
    [33] John S, Filip W, Prafulla D, Alec R, Oleg K. Proximal policy optimization algorithms [Online], available: http://www.arXiv.org, August 28, 2017
    [34] Kingma D, Ba J. Adam: A method for stochastic optimization [Online], available: http://www.arXiv.org, January 30, 2017
    [35] Sun R Y. Optimization for deep learning: An overview. Journal of the Operations Research Society of China, 2020, 8(2): 249—294 doi: 10.1007/s40305-020-00309-6
    [36] Tuomas H, Aurick Z, Pieter A, Sergey L. Soft actor-critic: Off-policy maximum entropy deep reinforcement learning with a stochastic actor [Online], available: http://www.arXiv.org, August 8, 2018
    [37] Wang H J, Yang Z, Zhou W G, Li D L. Online scheduling of image satellites based on neural networks and deep reinforcement learning. Chinese Journal of Aeronautics, 2019, 32(4): 1011—1019 doi: 10.1016/j.cja.2018.12.018
    [38] 王肖宇. 基于层次分析法的京沈清文化遗产廊道构建 [博士论文], 西安建筑科技大学, 中国, 2009

    Wang Xiao-Yu. Creation of Beijing-Shenyang Qing (Dynasty) Cultural Heritage Corridor Based on Analytic Hierarchy Process [Ph.D. dissertation], Xi'an University of Architecture and Technology, China, 2009
  • 加载中
图(9) / 表(8)
计量
  • 文章访问数:  881
  • HTML全文浏览量:  221
  • PDF下载量:  280
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-06-04
  • 录用日期:  2022-04-07
  • 网络出版日期:  2023-02-24
  • 刊出日期:  2023-06-20

目录

    /

    返回文章
    返回