2.845

2023影响因子

(CJCR)

  • 中文核心
  • EI
  • 中国科技核心
  • Scopus
  • CSCD
  • 英国科学文摘

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于网格重构学习的染色体分类模型

张林 易先鹏 王广杰 范心宇 刘辉 王雪松

张林, 易先鹏, 王广杰, 范心宇, 刘辉, 王雪松. 基于网格重构学习的染色体分类模型. 自动化学报, 2024, 50(10): 2013−2021 doi: 10.16383/j.aas.c210303
引用本文: 张林, 易先鹏, 王广杰, 范心宇, 刘辉, 王雪松. 基于网格重构学习的染色体分类模型. 自动化学报, 2024, 50(10): 2013−2021 doi: 10.16383/j.aas.c210303
Zhang Lin, Yi Xian-Peng, Wang Guang-Jie, Fan Xin-Yu, Liu Hui, Wang Xue-Song. A grid reconstruction learning model for chromosome classification. Acta Automatica Sinica, 2024, 50(10): 2013−2021 doi: 10.16383/j.aas.c210303
Citation: Zhang Lin, Yi Xian-Peng, Wang Guang-Jie, Fan Xin-Yu, Liu Hui, Wang Xue-Song. A grid reconstruction learning model for chromosome classification. Acta Automatica Sinica, 2024, 50(10): 2013−2021 doi: 10.16383/j.aas.c210303

基于网格重构学习的染色体分类模型

doi: 10.16383/j.aas.c210303
基金项目: 国家自然科学基金(61971422, 31871337)资助
详细信息
    作者简介:

    张林:中国矿业大学信息与控制工程学院教授. 主要研究方向为生物信息学, 医学图像处理, 机器学习. E-mail: lin.zhang@cumt.edu.cn

    易先鹏:中国矿业大学信息与控制工程学院硕士研究生. 主要研究方向为医学图像处理. E-mail: xianpeng.yi@cumt.edu.cn

    王广杰:中国矿业大学信息与控制工程学院硕士研究生. 主要研究方向为医学图像处理. E-mail: guangjie.wang@cumt.edu.cn

    范心宇:中国矿业大学信息与控制工程学院博士研究生. 主要研究方向为图像处理. E-mail: xinyu.fan@cumt.edu.cn

    刘辉:中国矿业大学信息与控制工程学院副教授. 主要研究方向为生物信息学, 医学图像处理, 机器学习. E-mail: hui.liu@cumt.edu.cn

    王雪松:中国矿业大学信息与控制工程学院教授. 主要研究方向为人工智能, 机器学习. 本文通信作者. E-mail: wangxuesongcumt@163.com

A Grid Reconstruction Learning Model for Chromosome Classification

Funds: Supported by National Natural Science Foundation of China (61971422, 31871337)
More Information
    Author Bio:

    ZHANG Lin Professor at the School of Information and Control Engineering, China University of Mining and Technology. Her research interest covers bioinformatics, medical image processing, and machine learning

    YI Xian-Peng Master student at the School of Information and Control Engineering, China University of Mining and Technology. His main research interest is medical image processing

    WANG Guang-Jie Master student at the School of Information and Control Engineering, China University of Mining and Technology. His main research interest is medical image processing

    FAN Xin-Yu Ph.D. candidate at the School of Information and Control Engineering, China University of Mining and Technology. Her main research interest is image processing

    LIU Hui Associate professor at the School of Information and Control Engineering, China University of Mining and Technology. His research interest covers bioinformatics, medical image processing, and machine learning

    WANG Xue-Song Professor at the School of Information and Control Engineering, China University of Mining and Technology. Her research interest covers artificial intelligence and machine learning. Corresponding author of this paper

  • 摘要: 染色体的分类是核型分析的重要任务之一. 因其柔软易弯曲, 且类间差异小、类内差异大等特点, 其精准分类仍然是一个具有挑战性的难题. 对此, 提出一种基于网格重构学习(Grid reconstruction learning, GRiCoL)的染色体分类模型. 该模型首先将染色体图像网格化, 提取局部分类特征; 然后通过重构网络对全局特征进行二次提取; 最后完成分类. 相比于现有几种先进方法, GRiCoL同时兼顾局部和全局特征提取更有效的分类特征, 有效改善染色体弯曲导致的分类性能下降, 参数规模合理. 通过基于G带、荧光原位杂交 (Fluorescence in situ hybridization, FISH)、Q带染色体公开数据集的实验表明: GRiCoL能够更好地弱化染色体弯曲带来的影响, 在不同数据集上的分类准确度均优于现有分类方法.
  • 图  1  基于网格重构学习的染色体分类模型

    Fig.  1  Chromosome classification model based on grid reconstruction learning

    图  2  染色体图像网格化效果

    Fig.  2  Gridding effect of chromosome image

    图  3  重构网络模型

    Fig.  3  Reconstruction network model

    图  4  染色体图像

    Fig.  4  Chromosome images

    图  5  骨干网络第50层特征的导向反向传播可视化

    Fig.  5  Visualization of guided back propagation of the 50th layer features of the backbone network

    图  6  特征的t-SNE降维表示

    Fig.  6  Representation of features dimensionality reduced by t-SNE

    表  1  交叠网格设计的分类性能对比

    Table  1  Classification performance comparison between grid with and without overlapping

    模型G带FISHQ带
    无交叠 GRiCoL98.1%96.2%95.3%
    GRiCoL99.5%97.2%97.3%
    p2.66e−220.521.71e−8
    下载: 导出CSV

    表  2  不同N数量下分类性能的对比

    Table  2  Classification performance comparison between grids with different N

    NG带(%)FISH (%)Q带(%)Gflops参数量(M)
    298.596.195.811.522.1
    399.597.297.326.027.5
    499.297.897.646.335.0
    下载: 导出CSV

    表  3  不同模型分类性能对比(%)

    Table  3  Classification performance comparison between different models (%)

    模型G带FISHQ带
    基线[34]93.492.087.8
    基线[35]95.393.491.7
    CIRNet96.083.386.5
    ResNet5086.492.695.3
    文献[29]94.793.787.7
    文献[30]94.0
    GRiL98.395.895.9
    GRiCoL99.597.297.3
    下载: 导出CSV
  • [1] Madian N, Jayanthi K B. Analysis of human chromosome classification using centromere position. Measurement, 2014, 47: 287−295 doi: 10.1016/j.measurement.2013.08.033
    [2] Abid F, Hamami L. A survey of neural network based automated systems for human chromosome classification. Artificial Intelligence Review, 2018, 49(1): 41−56 doi: 10.1007/s10462-016-9515-5
    [3] Poletti E, Grisan E, Ruggeri A. A modular framework for the automatic classification of chromosomes in Q-band images. Computer Methods and Programs in Biomedicine, 2012, 105(2): 120−130 doi: 10.1016/j.cmpb.2011.07.013
    [4] Khan S, DSouza A, Sanches J, Ventura R. Geometric correction of deformed chromosomes for automatic Karyotyping. In: Proceedings of the Annual International Conference of the IEEE Engineering in Medicine and Biology Society. San Diego, USA: IEEE, 2012. 4438−4441
    [5] Sharif Razavian A, Azizpour H, Sullivan J, Carlsson S. CNN features off-the-shelf: An astounding baseline for recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition Workshops. Columbus, USA: IEEE, 2014. 512−519
    [6] Lerner B, Guterman H, Dinstein I, Romem Y. Medial axis transform-based features and a neural network for human chromosome classification. Pattern Recognition, 1995, 28(11): 1673−1683 doi: 10.1016/0031-3203(95)00042-X
    [7] Ming D L, Tian J W. Automatic pattern extraction and classification for chromosome images. Journal of Infrared, Millimeter, and Terahertz Waves, 2010, 31(7): 866−877 doi: 10.1007/s10762-010-9640-1
    [8] Markou C M C, Delopoulos A. Automatic chromosome classification using support vector machines. In: Proceedings of the IEEE Information Technology, Networking, Electronic and Automation Control Conference. 2012. 1−24
    [9] Gao D Y, Madden M, Chambers D, Lyons G. Bayesian ANN classifier for ECG arrhythmia diagnostic system: A comparison study. In: Proceedings of the IEEE International Joint Conference on Neural Networks. Montreal, Canada: IEEE, 2005. 2383−2388
    [10] 田娟秀, 刘国才, 谷珊珊, 鞠忠建, 刘劲光, 顾冬冬. 医学图像分析深度学习方法研究与挑战. 自动化学报, 2018, 44(3): 401−424

    Tian Juan-Xiu, Liu Guo-Cai, Gu Shan-Shan, Ju Zhong-Jian, Liu Jin-Guang, Gu Dong-Dong. Deep learning in medical image analysis and its challenges. Acta Automatica Sinica, 2018, 44(3): 401−424
    [11] 宋燕, 王勇. 多阶段注意力胶囊网络的图像分类. 自动化学报, 2024, 50(9): 1804−1817

    Song Yan, Wang Yong. Multi-stage attention-based capsule networks for image classification. Acta Automatica Sinica, 2024, 50(9): 1804−1817
    [12] 冯建周, 马祥聪. 基于迁移学习的细粒度实体分类方法的研究. 自动化学报, 2020, 46(8): 1759−1766

    Feng Jian-Zhou, Ma Xiang-Cong. Fine-grained entity type classification based on transfer learning. Acta Automatica Sinica, 2020, 46(8): 1759−1766
    [13] Sharma M, Saha O, Sriraman A, Hebbalaguppe R, Vig L, Karande S. Crowdsourcing for chromosome segmentation and deep classification. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition Workshops (CVPRW). Honolulu, USA: IEEE, 2017. 786−793
    [14] Swati, Gupta G, Yadav M, Sharma M, Vig L. Siamese networks for chromosome classification. In: Proceedings of the IEEE International Conference on Computer Vision Workshops (ICCVW). Venice, Italy: IEEE, 2017. 72−81
    [15] Javan-Roshtkhari M, Setarehdan S K. A new approach to automatic classification of the curved chromosomes. In: Proceedings of the 5th International Symposium on Image and Signal Processing and Analysis. Istanbul, Turkey: IEEE, 2007. 19−24
    [16] Zhang J P, Hu W J, Li S Y, Wen Y F, Bao Y, Huang H F, et al. Chromosome classification and straightening based on an interleaved and multi-task network. IEEE Journal of Biomedical and Health Informatics, 2021, 25(8): 3240−3251 doi: 10.1109/JBHI.2021.3062234
    [17] Qin Y L, Wen J, Zheng H, Huang X L, Yang J, Song N, et al. Varifocal-net: A chromosome classification approach using deep convolutional networks. IEEE Transactions on Medical Imaging, 2019, 38(11): 2569−2581 doi: 10.1109/TMI.2019.2905841
    [18] He K M, Zhang X Y, Ren S Q, Sun J. Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Las Vegas, USA: IEEE, 2016. 770−778
    [19] Wu Y R, Yue Y S, Tan X, Wang W, Lu T. End-to-end chromosome karyotyping with data augmentation using GAN. In: Proceedings of the 25th IEEE International Conference on Image Processing (ICIP). Athens, Greece: IEEE, 2018. 2456−2460
    [20] Yang Z, Luo T G, Wang D, Hu Z Q, Gao J, Wang L W. Learning to navigate for fine-grained classification. In: Proceedings of the 15th European Conference on Computer Vision (ECCV). Munich, Germany: Springer, 2018. 438−454
    [21] 罗建豪, 吴建鑫. 基于深度卷积特征的细粒度图像分类研究综述. 自动化学报, 2017, 43(8): 1306−1318

    Luo Jian-Hao, Wu Jian-Xin. A survey on fine-grained image categorization using deep convolutional features. Acta Automatica Sinica, 2017, 43(8): 1306−1318
    [22] Cui Y, Zhou F, Wang J, Liu X, Lin Y Q, Belongie S. Kernel pooling for convolutional neural networks. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Honolulu, USA: IEEE, 2017. 3049−3058
    [23] Lin T Y, RoyChowdhury A, Maji S. Bilinear CNN models for fine-grained visual recognition. In: Proceedings of the IEEE International Conference on Computer Vision (ICCV). Santiago, Chile: IEEE, 2015. 1449−1457
    [24] Chen Y, Bai Y L, Zhang W, Mei T. Destruction and construction learning for fine-grained image recognition. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). Long Beach, USA: IEEE, 2019. 5152−5161
    [25] Fu J L, Zheng H L, Mei T. Look closer to see better: Recurrent attention convolutional neural network for fine-grained image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Honolulu, USA: IEEE, 2017. 4476−4484
    [26] Wei X S, Xie C W, Wu J X, Shen C H. Mask-CNN: Localizing parts and selecting descriptors for fine-grained bird species categorization. Pattern Recognition, 2018, 76: 704−714 doi: 10.1016/j.patcog.2017.10.002
    [27] Fukui H, Hirakawa T, Yamashita T, Fujiyoshi H. Attention branch network: Learning of attention mechanism for visual explanation. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). Long Beach, USA: IEEE, 2019. 10697−10706
    [28] Lin C C, Zhao G S, Yang Z R, Yin A H, Wang X M, Guo L, et al. CIR-Net: Automatic classification of human chromosome based on inception-ResNet architecture. IEEE/ACM Transactions on Computational Biology and Bioinformatics, 2022, 19(3): 1285−1293 doi: 10.1109/TCBB.2020.3003445
    [29] Hu X, Yi W L, Jiang L, Wu S J, Zhang Y, Du J Q, et al. Classification of metaphase chromosomes using deep convolutional neural network. Journal of Computational Biology, 2019, 26(5): 473−484 doi: 10.1089/cmb.2018.0212
    [30] Wang X W, Zheng B, Li S B, Mulvihill J J, Wood M C, Liu H. Automated classification of metaphase chromosomes: Optimization of an adaptive computerized scheme. Journal of Biomedical Informatics, 2009, 42(1): 22−31 doi: 10.1016/j.jbi.2008.05.004
    [31] 刘嘉敏, 苏远歧, 魏平, 刘跃虎. 基于长短记忆与信息注意的视频−脑电交互协同情感识别. 自动化学报, 2020, 46(10): 2137−2147

    Liu Jia-Min, Su Yuan-Qi, Wei Ping, Liu Yue-Hu. Video-EEG based collaborative emotion recognition using LSTM and information-attention. Acta Automatica Sinica, 2020, 46(10): 2137−2147
    [32] Springenberg J T, Dosovitskiy A, Brox T, Riedmiller M A. Striving for simplicity: The all convolutional net. In: Proceedings of the 3rd International Conference on Learning Representations. San Diego, USA: 2015.
    [33] Van der Maaten L, Hinton G. Visualizing data using t-SNE. Journal of Machine Learning Research, 2008, 9: 2579−2605
    [34] Zhang Y Z, Liu S W, Qi L, Coleman S, Kerr D, Shi W D. Multi-level and multi-scale horizontal pooling network for person re-identification. Multimedia Tools and Applications, 2020, 79(39): 28603−28619
    [35] 王雅湄, 王振友. 基于多区域特征的深度卷积神经网络模型. 应用数学进展, 2019, 8(11): 1753−1765 doi: 10.12677/AAM.2019.811205

    Wang Ya-Mei, Wang Zhen-You. Deep convolutional neural network model based on multi-region feature. Advances in Applied Mathematics, 2019, 8(11): 1753−1765 doi: 10.12677/AAM.2019.811205
  • 加载中
图(6) / 表(3)
计量
  • 文章访问数:  529
  • HTML全文浏览量:  280
  • PDF下载量:  54
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-04-09
  • 录用日期:  2021-12-02
  • 网络出版日期:  2022-02-04
  • 刊出日期:  2024-10-21

目录

    /

    返回文章
    返回