2.765

2022影响因子

(CJCR)

  • 中文核心
  • EI
  • 中国科技核心
  • Scopus
  • CSCD
  • 英国科学文摘

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于SCN数据模型的SISO非线性自适应控制

代伟 张政煊 杨春雨 马小平

代伟, 张政煊, 杨春雨, 马小平. 基于SCN数据模型的SISO非线性自适应控制. 自动化学报, 2022, 45(x): 1−11 doi: 10.16383/j.aas.c210174
引用本文: 代伟, 张政煊, 杨春雨, 马小平. 基于SCN数据模型的SISO非线性自适应控制. 自动化学报, 2022, 45(x): 1−11 doi: 10.16383/j.aas.c210174
Dai Wei, Zhang Zheng-Xuan, Yang Chun-Yu, Ma Xiao-Ping. Adaptive control of siso nonlinear system using data-driven scn model. Acta Automatica Sinica, 2022, 45(x): 1−11 doi: 10.16383/j.aas.c210174
Citation: Dai Wei, Zhang Zheng-Xuan, Yang Chun-Yu, Ma Xiao-Ping. Adaptive control of siso nonlinear system using data-driven scn model. Acta Automatica Sinica, 2022, 45(x): 1−11 doi: 10.16383/j.aas.c210174

基于SCN数据模型的SISO非线性自适应控制

doi: 10.16383/j.aas.c210174
基金项目: 国家自然科学基金项目 (61973306), 江苏省自然科学基金项目 (BK20200086), 流程工业综合自动化国家重点实验室开放课题基金资助项目(2020-KF-21-10)
详细信息
    作者简介:

    代伟:中国矿业大学信息与控制工程学院教授.主要研究方向为复杂工业过程建模, 运行优化与控制. 本文通信作者. E-mail: weidai@cumt.edu.cn

    张政煊:北京科技大学自动化学院博士研究生. 2021年获得中国矿业大学信息与控制工程学院硕士学位.主要研究方向为数据特征提取, 不规则采样数据的建模, 非线性自适应控制. E-mail: zzxqlkd@163.com

    杨春雨:中国矿业大学信息与控制工程学院教授.于 2009 年获得东北大学博士学位.主要研究方向为广义系统, 鲁棒控制. E-mail: chunyuyang@cumt.edu.cn

    马小平:中国矿业大学信息与控制工程学院教授.主要研究方向为过程控制, 网络控制, 故障诊断. E-mail: xpma@cumt.edu.cn

Adaptive Control of SISO Nonlinear System Using Data-driven SCN Model

Funds: Supported by National Natural Science Foundation of China (61973306), Natural Science Foundation of Jiangsu Provinces (BK20200086), State Key Laboratory of Synthetical Automation for Process Industries(2020-KF-21-10)
More Information
    Author Bio:

    DAI Wei Professor at the School of Information and control Engineering, China University of Mining and Technology. His research interest covers modeling, operational optimization, and control for complex industrial process. Corresponding author of this paper

    ZHANG Zheng-xuan Ph. D. candidate at the School of Automation and Electrical Engineering, University of Science and Technology Beijing.He received his bachelor degree from School of Information and Control Engineering, China University of Mining and Technology in 2021. His research interest covers feature extraction of data, modeling of irregularly sampled data and nonlinear adaptive control

    YANG Chun-yu Professor at the School of Information and Control Engineering, China University of Mining and Technology. He received his Ph.D. degree from Northeastern University in 2009. His research interest covers descriptor systems and robust control

    MA Xiao-ping Professor at the School of Information and Control Engineering, China University of Mining and Technology. His research interest covers process control, networked control, and fault detection

  • 摘要: 针对一类难以建立精确模型的单输入单输出(Single-input single-output, SISO) 非线性离散动态系统, 提出了一种数据驱动模型的自适应控制方法. 所提方法首先设计具有直链与增强结构的随机配置网络(Stochastic configuration network, SCN), 建立了一种可同时表征非线性系统低阶线性部分与高阶非线性项(未建模动态)的数据驱动模型, 并采用增量学习方法与监督机制, 对模型结构与模型参数进行同步更新优化, 保证了数据驱动模型的无限逼近能力, 解决了传统自适应控制采用交替辨识算法存在的建模精度低、模型收敛性无法保证的问题. 进而利用直链部分与增强部分, 分别设计了线性控制器及虚拟未建模动态补偿器, 建立了基于SCN 数据驱动模型的自适应控制新方法, 分析了其稳定性与收敛性, 通过数值仿真实验和采用交替辨识算法的传统自适应控制方法进行对比, 实验结果表明所提方法的有效性.
  • 图  1  带直链的随机配置网络(SCN)

    Fig.  1  Stochastic configuration network (SCN) with direct chain

    图  2  基于SCN数据模型的自适应控制方法结构图

    Fig.  2  Structure diagram of adaptive control method with SCN-based data-driven model

    图  3  不同遗忘因子下的控制系统输出

    Fig.  3  Output of control system under different forgetting factors

    图  4  控制系统输出对比

    Fig.  4  Comparison of the output of the control system

    图  5  控制系统输入对比

    Fig.  5  Comparison of the input of the control system

    图  6  控制系统输出误差对比

    Fig.  6  Comparison of the output errors of the control systems

    图  7  非线性系统模型估计误差对比

    Fig.  7  Comparison of model estimation errors of nonlinear systems

    图  8  基于SCN数据模型的灰分含量跟踪控制输出

    Fig.  8  Output of Ash content tracking control based on SCN data-driven model

    图  9  基于SCN数据模型的重介质选煤灰分含量估计误差曲线

    Fig.  9  Estimation error curve of ash content based on SCN data-driven model

    表  1  模型性能对比

    Table  1  Performance comparison of models

    模型性能指标 增强节点个数 离线建模
    时间(s)
    模型在线平均绝
    对误差
    传统RVFLN
    模型[21] 17 0.25719 0.0046
    SCN模型 9 0.245820 0.0013
    下载: 导出CSV

    表  2  控制系统模型估计性能对比

    Table  2  Comparison of performance of model estimates for control systems

    基于不同模型的自适应控制系统 ${\rm MAE}\left| {e'} \right|$
    基于线性模型的自适应控制 0.0092
    基于BP交替辨识模型的自适应控制 0.0070
    基于ANFIS交替辨识模型的自适应控制 0.0051
    基于SCN数据模型的自适应控制 0.0013
    下载: 导出CSV
  • [1] Gao C H, Jian L, Liu X Y, Chen J M, Sun Y X. Data-Driven Modeling Based on Volterra Series for Multidimensional Blast Furnace System[J]. IEEE Transactions on Neural Networks, 2011, 22(12): 2272-2283 doi: 10.1109/TNN.2011.2175945
    [2] Diaz S, Luque J, Romero M C, Escudero J I. Power systems monitoring and control using Telecom network management standards[J]. IEEE Transactions on Power Delivery, 2005, 20(2): 1349-1356 doi: 10.1109/TPWRD.2004.833918
    [3] Wu Z W, Wu Y J, Chai T Y, Sun J. Data-Driven Abnormal Condition Identification and Self-Healing Control System for Fused Magnesium Furnace[J]. IEEE Transactions on Industrial Electronics, 2015, 62(3):1703-1715 doi: 10.1109/TIE.2014.2349479
    [4] Biswal G R, Maheshwari R P, Dewal M L. Modeling, Control, and Monitoring of S3RS-Based Hydrogen Cooling System in Thermal Power Plant[J]. IEEE Transactions on Industrial Electronics, 2012, 59(1): 562-570 doi: 10.1109/TIE.2011.2134059
    [5] 柴天佑. 自动化科学与技术发展方向[J]. 自动化学报, 2018, 44(11):1923-1930 doi: 10.16383/j.aas.2018.c180252

    CHAI Tian-you. Development Direction of Automation Science and Technology[J]. Acta Automatica Sinica, 2018, 44(11):1923-1930 doi: 10.16383/j.aas.2018.c180252
    [6] Landau I D. A Survey of Model Reference Adaptive Techniques-Theory and applications[J]. Automatica, 1974, 10(4): 353-379 doi: 10.1016/0005-1098(74)90064-8
    [7] 柴天佑, 岳恒. 自适应控制[M]. 清华大学出版社, 2016

    Chai Tian-you, Yue Heng. Adaptive control [M]. Tsinghua University Press, 2016
    [8] Ceperic E, Ceperic V, Baric A. A Strategy for Short-Term Load Forecasting by Support Vector Regression Machines[J]. IEEE Transactions on Power Systems, 2013, 28(4):4356-4364 doi: 10.1109/TPWRS.2013.2269803
    [9] Milanese M, Vicino A, Optimal estimation theory for dynamic systems with set membership uncertainty: An overview[J], Automatica, 1991, 27(07): 997-1009
    [10] Zadeh L A. Fuzzy logic, neural networks, and soft computing[J]. Microprocessing & Microprogramming, 1993, 37(3): 77-84
    [11] 徐凤霞, 朱全民, 赵东亚, 李少远. 基于U模型的非线性控制系统设计方法十年发展综述[J]. 控制与决策, 2013, 28(07): 961-971 doi: 10.13195/j.cd.2013.07.4.xufx.023

    Xu Feng-xia, Zhu Quan-ming, Zhao Dong-ya, Li Shao-yuan. U-model based design methods for nonlinear control systems a survey of the development in the 1st decade[J]. Control and Decision, 2013, 28(07): 961-971 doi: 10.13195/j.cd.2013.07.4.xufx.023
    [12] Chen S, Billings S A. Neural networks for nonlinear dynamic system modelling and identification[J]. International Journal of Control, 1991, 56(2):319-346
    [13] Panjapornpon C, Saksomboon P, Dechakupt T. Real-Time Application of pH Control in a Carbon Dioxide Bubble Column Reactor by Input/Output Linearizing Control Coupled with pH Target Optimizer[J]. Industrial & Engineering Chemistry Research, 2018, 58(2): 771-781
    [14] Gao Y, Er M J. NARMAX time series model prediction: feedforward and recurrent fuzzy neural network approaches[J]. Fuzzy sets and systems, 2005, 150(2): 331-350. doi: 10.1016/j.fss.2004.09.015
    [15] Chen L, Narendra K S. Nonlinear adaptive control using neural networks and multiple models[J]. Automatica, 2001, 37(8):1245-1255 doi: 10.1016/S0005-1098(01)00072-3
    [16] 王兰豪,贾瑶,柴天佑. 再磨过程的泵池液位和给矿压双速率区间控制[J].自动化学报,2017,43(06):993-1006

    Wang Lan-hao, Jia Yao, Chai Tian-you. Double Rate Interval Control of Pump Pool Liquid Level and Feed Pressure in Regrinding Process[J]. Acta Automatica Sinica,2017,43(06):993-1006
    [17] Zhang Y J, Chai T Y, Wang D H. An Alternating Identification Algorithm for a Class of Nonlinear Dynamical Systems[J]. IEEE Transactions on Neural Networks and Learning Systems, 2017, 28(7):1-12 doi: 10.1109/TNNLS.2017.2705379
    [18] Zhang Y J, Chai T Y, Wang H, Wang D H. Nonlinear Decoupling Control With ANFIS-Based Unmodeled Dynamics Compensation for a Class of Complex Industrial Processes[J]. IEEE Transactions on Neural Networks and Learning Systems. 2018, 29(6):2352-2366 doi: 10.1109/TNNLS.2017.2691905
    [19] Wang H, Wang A P, Brown M, Harris C J. One-to-one mapping and its application to neural networks based control systems design[J]. International Journal of Systems Science, 1996, 27(2): 161-170 doi: 10.1080/00207729608929200
    [20] Ljung L. Convergence analysis of parametric identification methods[J]. IEEE Transactions on Automatic Control, 1978, 23(5):770-783 doi: 10.1109/TAC.1978.1101840
    [21] Pao Y H, Park G H, Sobajic D J. Learning and generalization characteristics of the random vector Functional-link net[J]. Neurocomputing, 1994, 6(2): 163-180 doi: 10.1016/0925-2312(94)90053-1
    [22] Dai W, Zhou X Y, Li D P, Zhu Song, Wang X S. Hybrid Parallel Stochastic Configuration Networks for Industrial Data Analytics[J]. IEEE Transactions on Industrial Informatics, 2021, 18(4): 2331-2341
    [23] Wang D, Li M. Stochastic Configuration Networks: Fundamentals and Algorithms[J]. IEEE Transactions on Cybernetics, 2017, 47(10): 3466-3479 doi: 10.1109/TCYB.2017.2734043
    [24] Dai W, Zhang L Z, Fu J, Chai T Y, Ma X P. Model-data-based switching adaptive control for dense medium separation in coal beneficiation[J]. Control Engineering Practice, 2020, 98: 1-12
    [25] Zhang L J, Xia X H, Zhang J F. Medium density control for coal washing dense medium cyclone circuits[J]. IEEE Transactions on Control Systems Technology, 2014, 23(3): 1117-1122.
  • 加载中
计量
  • 文章访问数:  459
  • HTML全文浏览量:  134
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-03-03
  • 录用日期:  2022-03-01
  • 网络出版日期:  2022-10-26

目录

    /

    返回文章
    返回