2.793

2018影响因子

(CJCR)

  • 中文核心
  • EI
  • 中国科技核心
  • Scopus
  • CSCD
  • 英国科学文摘

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

DoS攻击下具备隐私保护的多智能体系统均值趋同控制

胡沁伶 郑宁 徐明 伍益明 何熊熊

胡沁伶, 郑宁, 徐明, 伍益明, 何熊熊. DoS攻击下具备隐私保护的多智能体系统均值趋同控制. 自动化学报, 2021, 47(x): 1−11 doi: 10.16383/j.aas.c201019
引用本文: 胡沁伶, 郑宁, 徐明, 伍益明, 何熊熊. DoS攻击下具备隐私保护的多智能体系统均值趋同控制. 自动化学报, 2021, 47(x): 1−11 doi: 10.16383/j.aas.c201019
Hu Qin-Ling, Zheng Ning, Xu Ming, Wu Yi-Ming, He Xiong-Xiong. Privacy-preserving average consensus control for multi-agent systems under dos attacks. Acta Automatica Sinica, 2021, 47(x): 1−11 doi: 10.16383/j.aas.c201019
Citation: Hu Qin-Ling, Zheng Ning, Xu Ming, Wu Yi-Ming, He Xiong-Xiong. Privacy-preserving average consensus control for multi-agent systems under dos attacks. Acta Automatica Sinica, 2021, 47(x): 1−11 doi: 10.16383/j.aas.c201019

DoS攻击下具备隐私保护的多智能体系统均值趋同控制

doi: 10.16383/j.aas.c201019
基金项目: 国家自然科学基金(61803135, 61873239, 62073109), 浙江省公益技术应用研究项目(LGF21F020011)资助
详细信息
    作者简介:

    胡沁伶:杭州电子科技大学网络空间安全学院硕士研究生. 2015年获得杭州电子科技大学信息安全学士学位. 主要研究方向为多智能体系统网络安全, 隐私保护. E-mail: Hazelhu0601@126.com

    郑宁:杭州电子科技大学网络空间安全学院研究员. 1990年获得浙江大学硕士学位. 主要研究方向包括信息安全, 信息管理系统, 多智能体系统等. E-mail: nzheng@hdu.edu.cn

    徐明:杭州电子科技大学网络空间安全学院教授. 2004年获得浙江大学博士学位. 主要研究方向包括网络信息安全, 数字取证等. E-mail: mxu@hdu.edu.cn

    伍益明:杭州电子科技大学网络空间安全学院副教授. 2016年获得浙江工业大学控制科学与工程博士学位. 主要研究方向包括分布式系统安全控制, 多智能体系统网络安全, 迭代学习控制等. 本文通信作者. E-mail: ymwu@hdu.edu.cn

    何熊熊:浙江工业大学信息工程学院教授. 1997年获得浙江大学博士学位. 主要研究方向为迭代学习控制, 智能控制及其在多智能体系统和传感器网络中的应用. E-mail: hxx@zjut.edu.cn

Privacy-Preserving Average Consensus Control for Multi-Agent Systems under DoS Attacks

Funds: Supported by National Natural Science Foundation of China (61803135, 61873239, and 62073109), Zhejiang Provincial Public Welfare Research Project of China (LGF21F020011)
More Information
    Author Bio:

    HU Qin-Ling Master student at the School of Cyberspace, Hangzhou Dianzi University, Hangzhou, China. She received her bachelor degree in information security from Hangzhou Dianzi University, Hangzhou, China, in 2015. Her research interest covers cyber security for multi-agent systems, privacy-preserving

    ZHENG Ning Professor at the School of Cyberspace, Hangzhou Dianzi University. He received his M.S. degree from Zhejiang University, Hangzhou, China, in 1990. His research interest covers information security, information management system, multi-agent network and so on

    XU Ming Professor at the School of Cyberspace, Hangzhou Dianzi University. He received his Ph.D degree from Zhejiang University, Hangzhou, China, in 2004. His research interest covers network security, digital forensics and so on

    WU Yi-Ming Associate professor at the School of Cyberspace, Hangzhou Dianzi University. He received his Ph.D degree in control science and engineering from Zhejiang University of Technology, Hangzhou, China, in 2016. His research interest covers distributed system secure control, cyber-security for multi-agent systems, iterative learning control and so on. Corresponding author of this paper

    HE Xiong-Xiong Professor at the College of Information Engineering, Zhejiang University of Technology, Hangzhou, China. He received the Ph.D. degree from Zhejiang University, Hangzhou, China, in 1997. His research interest covers iterative learning control, intelligent control, and applications in multi-agent systems and sensor networks

  • 摘要: 均值趋同是一种广泛应用于分布式计算和控制的算法, 旨在系统通过相邻节点间信息交互、更新, 最终促使系统中所有节点以它们初始值的均值达成一致. 本文研究拒绝服务(denial-of-service, DoS)攻击下的分布式离散时间多智能体系统均值趋同问题. 首先, 给出一种基于状态分解思想的分布式网络节点状态信息处理机制, 可保证系统中所有节点输出值的隐私. 然后, 利用分解后的节点状态值及分析给出的网络通信拓扑条件, 提出一种适用于无向通信拓扑的多智能体系统均值趋同控制方法. 理论分析表明, 该方法能够有效抵御DoS攻击的影响, 且实现系统输出值均值趋同. 最后, 通过仿真实例验证了所提方法的有效性.
  • 图  1  DoS攻击下的多智能系统框图.

    Fig.  1  The diagram of the multi-agent system under DoS attacks.

    图  2  5个节点组成的示例图.

    Fig.  2  Example of network with 5 nodes.

    图  3  5个节点组成的通信图.

    Fig.  3  Network topology of multi-agent system with 5 nodes.

    图  4  系统在文献[13]

    Fig.  4  State trajectory of each node with control law in paper[13].

    图  5  DoS攻击影响下采用文献[13]中协议的各节点状态轨迹.

    Fig.  5  State trajectory of each node with control law in paper[13] under DoS attacks.

    图  6  5个节点组成的新通信图.

    Fig.  6  New network topology of 5 nodes.

    图  7  DoS攻击下系统中各节点在本文所提算法下的输出状态轨迹.

    Fig.  7  State trajectory of each node with our proposed control law under DoS attacks.

  • [1] 李韬, 孟杨, 张纪峰. 多自主体量化趋同与有限数据率趋同综述. 自动化学报, 2013, 39(11): 1805−1811 doi: 10.3724/SP.J.1004.2013.01805

    Li Tao, Meng Yang, Zhang Ji-Feng. An overview on quantized consensus and consensus with limited data rate of multi-agent systems. Acta Automatica Sinica, 2013, 39(11): 1805−1811 doi: 10.3724/SP.J.1004.2013.01805
    [2] 杨洪勇, 郭雷, 张玉玲, 姚秀明. 离散时间分数阶多自主体系统的时延一致性. 自动化学报, 2014, 40(9): 2022−2028

    Yang Hong-Yong, Guo Lei, Zhang Yu-Ling, Yao Xiu-Ming. Delay consensus of fractional-order multi-agent systems with sampling delays. Acta Automatica Sinica, 2014, 40(9): 2022−2028
    [3] Yao A C. Protocols for secure computations. In: Proceedings of the 23rd Annual Symposium on Foundations of Computer Science. Chicago, IL, USA: IEEE, 1982. 160−164
    [4] Shamir A. How to share a secret. Communication of the ACM, 1979, 22: 612−613 doi: 10.1145/359168.359176
    [5] Kreuter B, Shelat A, Shen C H. Billion-gate secure computation with malicious adversaries. In: Proceedings of the 21th USENIX Conference on Security Symposium. Berkeley, CA, USA: USENIX Association, 2012. 285−300
    [6] Chen W, Cai S. Ad hoc peer-to-peer network architecture for vehicle safety communications. IEEE Communications Magazine, 2005, 43(4): 100−107 doi: 10.1109/MCOM.2005.1421912
    [7] Huang Z, Mitra S, Vaidya N. Differentially private distributed optimization. In: Proceedings of the 2015 International Conference on Distributed Computing and Networking. NewYork, USA: ACM, 2015. 1−10
    [8] Nozari E, Tallapragada P, Cortes J. Differentially private average consensus: obstructions, trade-offs, and optimal algorithm design. Automatica, 2017, 81(7): 221−231
    [9] Katewa V, Pasqualetti F, Gupta V. On privacy vs cooperation in multi-agent systems. International Journal of Control, 2018, 91(7): 1693−1707 doi: 10.1080/00207179.2017.1326632
    [10] Huang Z, Mitra S, Dullerud G. Differentially private iterative synchronous consensus. In: Proceedings of the 2012 ACM workshop on Privacy in the electronic society. NewYork, USA: ACM, 2012. 81−90
    [11] Nozari E, Tallapragada P, Cortes J. Differentially private average consensus with optimal noise selection. IFAC-PapersOnline, 2015, 48(22): 203−205 doi: 10.1016/j.ifacol.2015.10.331
    [12] Manitara N, Hadjicostis C. Privacy-preserving asymptotic average consensus. In: Proceedings of the 2013 European Control Conference (ECC). Zurich, Switzerland: IEEE, 2013. 760−765
    [13] Wang Y. Privacy-preserving average consensus via state decomposition. IEEE Transactions on Automatic Control, 2019, 64(11): 4711−4716 doi: 10.1109/TAC.2019.2902731
    [14] Kia S, Cortes J, Martinez S. Dynamic average consensus under limited control authority and privacy requirements. International Journal of Robust and Nonlinear Control, 2015, 25(13): 1941−1966 doi: 10.1002/rnc.3178
    [15] Pequito S, Kar S, Sundaram S, Aguiar A P. Design of communication networks for distributed computation with privacy guarantees. In: Proceedings of the 2015 54th IEEE Conference on Decision and Control (CDC). Osaka, Japan: IEEE, 2015. 1370−1376
    [16] Alaeddini A, Morgansen K, Mesbahi M. Adaptive communication networks with privacy guarantees. In: Proceedings of the 2017 American Control Conference (ACC). Seattle, USA: IEEE, 2017. 4460−4465
    [17] Gupta N, Chopra N. Confidentiality in distributed average information consensus. In: Proceedings of the 2016 IEEE 55th Conference on Decision and Control (CDC). Las Vegas, USA: IEEE, 2016. 6709−6714
    [18] Kogiso K, Fujita T. Cyber-security enhancement of networked control systems using homomorphic encryption. In: Proceedings of the 2015 54th IEEE Conference on Decision and Control (CDC). Osaka, Japan: IEEE, 2015. 6836−6843
    [19] Shoukry Y, Gatsis K, Alanwar A, Pappas G J, Seshia S A, Srivastava M et al. Privacy-aware quadratic optimization using partially homomorphic encryption. In: Proceedings of the 2016 IEEE 55th Conference on Decision and Control (CDC). Las Vegas, USA: IEEE, 2016. 5053−5058
    [20] Lagendijk R L, Erkin Z, Barni M. Encrypted signal processing for privacy protection: Conveying the utility of homomorphic encryption and multiparty computation. IEEE Signal Processing Magazine, 2013, 30(1): 82−105 doi: 10.1109/MSP.2012.2219653
    [21] Zhang C, Ahmad M, Wang Y. Admm based privacy-preserving decentralized optimization. IEEE Transactions on Information Forensics and Security, 2019, 14(3): 565−580 doi: 10.1109/TIFS.2018.2855169
    [22] LeBlanc H J, Zhang H, Koutsoukos X, Sundaram S. Resilient asymptotic consensus in robust networks. IEEE Journal on Selected Areas in Communications, 2013, 31(4): 766−781 doi: 10.1109/JSAC.2013.130413
    [23] Wu Y, He X. Secure consensus control for multiagent systems with attacks and communication delays. IEEE/CAA Journal of Automatica Sinica, 2017, 4(1): 136−142 doi: 10.1109/JAS.2016.7510010
    [24] Fiore D, Russo G. Resilient consensus for multi-agent systems subject to differential privacy requirements. Automatica, 2019, 106: 18−26 doi: 10.1016/j.automatica.2019.04.029
    [25] 黄锦波, 伍益明, 何熊熊, 常丽萍. 信任节点机制下的异构多智能体系统安全一致性控制. 中国科学: 信息科学, 2019, 49(5): 599−612 doi: 10.1360/N112018-00343

    Huang Jin-Bo, Wu Yi-Ming, He Xiong-Xiong, Chang Li-Ping. Secure consensus control for heterogeneous multi-agent systems with trusted nodes. Sci Sin Inform, 2019, 49(5): 599−612 doi: 10.1360/N112018-00343
    [26] Usevitch J, Panagou D. Resilient leaderfollower consensus to arbitrary reference values in time-varying graphs. IEEE Transactions on Automatic Control, 2020, 65(4): 1755−1762 doi: 10.1109/TAC.2019.2934954
    [27] He W, Mo Z, Han Q L, Qian F. Secure impulsive synchronization in lipschitztype multi-agent systems subject to deception attacks. IEEE/CAA Journal of Automatica Sinica, 2020, 5(7): 1326−1334
    [28] Fu W, Qin J, Shi Y, Zheng W X, Kang Y. Resilient consensus of discrete-time complex cyber-physical networks under deception attacks. IEEE Transactions on Industrial Informatics, 2020, 16(7): 4868−4877 doi: 10.1109/TII.2019.2933596
    [29] Zhang D, Liu L, Feng G. Consensus of heterogeneous linear multiagent systems subject to aperiodic sampled-data and dos attack. IEEE Transactions on Cybernetics, 2019, 49(4): 1501−1511 doi: 10.1109/TCYB.2018.2806387
    [30] Feng Z, Hu G. Secure cooperative event-triggered control of linear multiagent systems under dos attacks. IEEE Transactions on Control Systems Technology, 2020, 28(3): 741−752 doi: 10.1109/TCST.2019.2892032
    [31] Yang Y, Xu H, Yue D. Observer-based distributed secure consensus control of a class of linear multi-agent systems subject to random attacks. IEEE Transactions on Circuits and Systems I: Regular Papers, 2019, 66(8): 3089−3099 doi: 10.1109/TCSI.2019.2904747
    [32] Xu W, Hu G, Ho D W, Feng Z. Distributed secure cooperative control under denial-of-service attacks from multiple adversaries. IEEE Transactions on Cybernetics, 2020, 50(8): 3458−3467 doi: 10.1109/TCYB.2019.2896160
    [33] Wen G, Wang P, Huang T, Lü J, Zhang F. Distributed Consensus of Layered Multi-Agent Systems Subject to Attacks on Edges. IEEE Transactions on Circuits and Systems I: Regular Papers, 2020, 67(9): 3152−3162 doi: 10.1109/TCSI.2020.2986953
    [34] Zhang H, Fata E, Sundaram S. A notion of robustness in complex networks. IEEE Transactions on Control of Network Systems, 2015, 2(3): 310−320 doi: 10.1109/TCNS.2015.2413551
    [35] Yin X, Tan C, Huang J. Output consensus for networks of heterogeneous linear agents. In: Proceedings of the 2017 36th Chinese Control Conference (CCC). Da Lian, China: IEEE, 2017. 7679−7683
    [36] Zhang H, Sundaram S. Robustness of information diffusion algorithms to locally bounded adversaries. In: Proceedings of the 2012 American Control Conference (ACC). Montréal, Canada: IEEE, 2012. 5855−5861
    [37] Zhang H, Sundaram S. A simple median-based resilient consensus algorithm. In: Proceedings of the 2012 50th Annual Allerton Conference on Communication, Control, and Computing (Allerton). Monticello, IL, USA: IEEE, 2012. 1734−1741
    [38] Olfati-Saber R, Fax J A, Murray R M. Consensus and cooperation in networked multi-agent systems. Proceedings of the IEEE, 2007, 95(1): 215−233 doi: 10.1109/JPROC.2006.887293
    [39] Nedic A, Ozdaglar A, Parrilo P A. Constrained consensus and optimization in multi-agent networks. IEEE Transactions on Automatic Control, 2010, 55(4): 922−938 doi: 10.1109/TAC.2010.2041686
    [40] Yang Y, Li Y, Yue D, Tian Y, Ding X. Distributed secure consensus control with event-triggering for multiagent systems under dos attacks. IEEE Transactions on Cybernetics, in press, 2020, DOI: 10.1109/TCYB.2020.2979342.
  • 加载中
计量
  • 文章访问数:  252
  • HTML全文浏览量:  172
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-12-09
  • 录用日期:  2021-03-02
  • 网络出版日期:  2021-05-20

目录

    /

    返回文章
    返回