2.793

2018影响因子

(CJCR)

  • 中文核心
  • EI
  • 中国科技核心
  • Scopus
  • CSCD
  • 英国科学文摘

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

一致性约束下末制导系统最大可容许模式决策延迟

项盛文 范红旗 达凯 付强

项盛文, 范红旗, 达凯, 付强. 一致性约束下末制导系统最大可容许模式决策延迟. 自动化学报, 2020, 45(x): 1−9 doi: 10.16383/j.aas.c200717
引用本文: 项盛文, 范红旗, 达凯, 付强. 一致性约束下末制导系统最大可容许模式决策延迟. 自动化学报, 2020, 45(x): 1−9 doi: 10.16383/j.aas.c200717
Xiang Sheng-Wen, Fan Hong-Qi, Da Kai, Fu Qiang. Maximal admissible mode decision delay under consistency constraint in terminal guidance system. Acta Automatica Sinica, 2020, 45(x): 1−9 doi: 10.16383/j.aas.c200717
Citation: Xiang Sheng-Wen, Fan Hong-Qi, Da Kai, Fu Qiang. Maximal admissible mode decision delay under consistency constraint in terminal guidance system. Acta Automatica Sinica, 2020, 45(x): 1−9 doi: 10.16383/j.aas.c200717

一致性约束下末制导系统最大可容许模式决策延迟

doi: 10.16383/j.aas.c200717
详细信息
    作者简介:

    项盛文:国防科技大学博士研究生. 主要研究方向为图像处理、制导、导航与控制. E-mail: xiangsw224@163.com

    范红旗:国防科技大学研究员. 主要研究方向为雷达信号处理、目标跟踪、导引控制、信息融合. 本文通信作者. E-mail: fanhongqi@nudt.edu.cn

    达凯:国防科技大学博士研究生. 主要研究方向为雷达信号处理、多传感器多目标跟踪、信息融合. E-mail: dktm131@163.com

    付强:国防科技大学教授, 博士生导师. 主要研究方向为雷达信号处理与目标识别. E-mail: fuqiang1962@vip.sina.com

Maximal Admissible Mode Decision Delay Under Consistency Constraint in Terminal Guidance System

  • 摘要: 对于大机动目标拦截问题, 模式决策器是基于逻辑的集成估计导引系统(Integrated estimation and guidance, IEG)中的一个重要组件. 为了保证系统的估计精度和制导性能, 模式决策器的模式延迟应尽可能小. 本文针对末制导场景, 首先推导了离散时间系统零控脱靶量的估计误差模型, 然后在一致性约束条件下给出了系统最大可容许模式决策延迟的数值计算方法. 本文的研究结果可为IEG系统中模式决策器的设计提供指标参考.
  • 图  1  平面拦截几何

    Fig.  1  Planer interception geometry

    图  2  一个典型的基于逻辑的IEG制导系统框架[18]

    Fig.  2  A typical logic-based IEG guidance system frame

    图  3  目标模式切换和模式决策器输出示意图

    Fig.  3  Diagram of target's mode switch and mode decision-maker's outputs

    图  4  $ t_{{\rm sw}} = 2.0 \;{\rm{s}}$$ \Delta m = 10 \;{\rm{g}}$下的$ \chi _k^2 $

    Fig.  4  $ \chi _k^2 $ under $ t_{{\rm sw}} = 2.0 \;{\rm{s}}$ and $ \Delta m = 10 \;{\rm{g}}$

    图  5  $ t_{sw} = 1.0 \;{\rm{s}}$时不同机动幅度下的$ \chi _k^2 $

    Fig.  5  $ \chi _k^2 $ under different maneuver magnitude for $ t_{sw} = 1.0 \;{\rm{s}}$

    图  6  $ \Delta m = 20 \;{\rm{g}}$时不同机动时刻下的$ \chi _k^2 $

    Fig.  6  $ \chi _k^2 $ under different maneuver time for $ \Delta m = 20 \;{\rm{g}}$

    图  7  不同$ \Delta m $条件下MAMDD与模式切换时刻

    Fig.  7  MAMDD with mode switch time for different $ \Delta m $

    表  1  仿真参数

    Table  1  Simulation Parameters

    参数类型参数名称单位值(范围)
    弹目参数$ {V_{\rm p}} $m/s2300
    $ {V_{\rm e}} $m/s2700
    $ a_{\rm p}^{{\max}} $g30
    $ a_{\rm e}^{{\max}} $g15
    $ {\tau _{\rm p}} $s0.2
    $ {\tau _{\rm e}} $s0.2
    观测参数$ T $s0.01
    $ {\sigma _\theta } $mrad5
    $ {\sigma _a } $$ {\rm{m}}/{\rm{s}}^2 $1
    场景参数$ r_0 $m15000
    $ {\phi_{\rm p}}(0) $rad$ \pi/18 $
    $ {\phi_{\rm e}}(0) $rad$ > \pi /2 $且满足碰撞三角形
    目标机动方式随机乒乓
    估计器参数$ s_w $$ {\rm{g}}^2/{\rm{Hz}} $1
    初估计误差$ {{{\tilde x}}_0} = {[0,0,0,0]^{\rm T}} $
    初估协方差阵${ {{p} }_0} = \left[ \begin{aligned}\;\;0\;\;0\;\;\;\;\;\;0\;\;\;\;\;\;\;\;0\;\;\\\;\;0\;\;0\;\;\;\;\;\;0\;\;\;\;\;\;\;\;0\;\;\\\;\;0\;\;0\,\;\;{ { {(a_{\rm e}^{ {\max} })}^2} }\;\;\;0\;\;\\\;\;0\;\;0\;\;\;\;\;\;0\;\;\;\;\;\;\;\;0\;\; \end{aligned}\right]$
    下载: 导出CSV

    表  2  MAMDD的数值计算过程

    Table  2  Numerical calculation process of MAMDD

    初始化: 初始化拦截场景和估计器参数, 目标模式切换时刻$ t_{{\rm sw}} $, 模式变化量, $ \Delta m = m_2 - m_1 $和系统可接受虚警率$ \alpha $
    步骤1: 根据公式(42)计算$ t_k $时刻ZEM估计误差的均值;
    步骤2: 根据公式(40)计算$ t_k $时刻ZEM估计误差的方差;
    步骤3: 根据公式(43)计算$ t_k $时刻检验统计量$ \chi_k^2 $;
    步骤4: 判断$ t_k $时刻$ \chi_k^2 $与$ \chi_{1-\alpha}^2(1) $的大小, 若当前时刻满足
    $ \chi_k^2 \ge \chi_{1-\alpha}^2(1) $, 则$ {\rm{MAMDD}} = t_k - t_{{\rm sw}} $. 否则, 回到步骤1.
    下载: 导出CSV

    表  3  两种方法MAMDD对比

    Table  3  Comparison of MAMDD with two methods

    $ t_{sw} $ (s)捕获区约束MAMDD (s)一致性约束MAMDD (s)
    $ \Delta m = 5 \;{\rm{g}}$
    0.61.350.64
    1.20.940.53
    1.80.580.54
    2.20.370.60
    2.60.18$ \infty $
    $ \Delta m = 10 \;{\rm{g}}$
    0.60.940.39
    1.20.650.28
    1.80.410.28
    2.20.260.29
    2.60.12$ \infty $
    $ \Delta m = 15 \;{\rm{g}}$
    0.60.720.29
    1.20.500.20
    1.80.320.19
    2.20.200.25
    2.60.09$ \infty $
    $ \Delta m = 20 \;{\rm{g}}$
    0.60.580.24
    1.20.410.16
    1.80.260.15
    2.20.160.16
    2.60.080.19
    $ \Delta m = 30 \;{\rm{g}}$
    0.60.420.17
    1.20.300.11
    1.80.190.10
    2.20.120.11
    2.60.050.13
    下载: 导出CSV

    表    符号说明

    P导弹
    E目标
    $\tau_{\rm p}$,$\tau_{\rm e}$导弹和目标控制系统的时间常数
    $a_{\rm p}^{\max},a_{\rm e}^{\max}$导弹和目标最大横向加速度
    ${V_{\rm p}},{V_{\rm e}}$导弹和目标的飞行速度
    ${u_{\rm p}},{u_{\rm e}}$导弹和目标的横向加速度指令
    $r$弹目相对距离
    ${t_{\rm sw}}$目标模式切换时刻
    $t$仿真时间
    ${t_{\rm f}}$终止时刻
    ${t_{\rm go}}$剩余飞行时间
    g重力加速度, $9.8\;m/{s^2}$
    $m$目标的运动模式
    ${m_1},{m_2}$目标在模式切换时刻前后的运动模式
    $\Delta m$目标运动模式改变量, $\Delta m = {m_2} - {m_1}$
    $T$采样时间间隔
    ${\sigma _\theta }$测角精度
    ${\sigma _a}$导弹加速度测量精度
    ${s_w}$目标指令加速度误差的功率谱密度
    $\Delta t$目标运动模式辨识延迟
    ${{\tilde x}}$状态估计误差
    ${{\xi }},{\Sigma}$状态估计误差的均值和方差
    $\mu ,{\sigma ^2}$ZEM估计误差的均值和方差
    $\chi_k^2$检验统计量
    下载: 导出CSV
  • [1] Li X R, Jilkov V P. Survey of maneuvering target tracking. Part IV: decision-based methods. In: Proceedings of the 2002 SPIE Conference on Signal and Data Processing of Small Targets, Orlando, USA: SPIE, 2002.511-534
    [2] Li X R, Jilkov V P. Survey of Maneuvering Target Tracking. Part V: multiple-model methods. IEEE Transactions on Aerospace and Electronic Systems, 2005, 41(4): 1255−1321
    [3] Shinar J, Turetsky V, Glizer V Y. On Estimation in Interception Endgames. Journal of Optimization Theory and Applications, 2013, 157(3): 593−611
    [4] Shinar J, Shima T. Non-orthodox guidance law development approach for the interception of maneuvering anti-surface missiles. In: Proceedings of AIAA Guidance, Navigation, and Control Conference and Exhibit, Denver, USA: AIAA, 2000
    [5] Glizer V Y, Turetsky V. A Linear Differential Game with Bounded Controls and Two Information Delays. Optimal Control Applications and Methods, 2009, 30(2): 135−161
    [6] Glizer V Y, Turetsky V, Shinar J. Differential game with linear dynamics and multiple information delays. In: Proceedings of the 13th WSEAS International Conference on Systems, Rodos, Greece: WSEAS Press, 2009.179-184
    [7] Shinar J, Turetsky V. What Happens When Certainty Equivalence Is Not Valid? Is There an Optimal Estimator for Terminal Guidance? Annual Reviews in Control, 2003, 27(2): 119−130
    [8] Dionne D, Michalska H, Shinar J, Oshman Y. Decision-Directed Adaptive Estimation and Guidance for an Interception Endgame. Journal of Guidance, Control and Dynamics, 2006, 29(4): 970−980
    [9] 花文华, 陈兴林, 宋申民. 基于目标机动检测的集成估计与制导方法. 中南大学学报(自然科学版), 2011, 42(6): 1617−1623

    Hua W H, Chen X L, Song S M. Decision-Directed Adaptive Estimation and Guidance for An Interception Endgame. Journal of Central South University, 2011, 42(6): 1617−1623
    [10] Kumar G S, Ghose D, Vengadarajan A. A novel IEG strategy for realistically modeled seeker-less interceptors. In: Proceedings of AIAA Guidance, Navigation, and Control Conference, Kissimmee, USA: AIAA, 2015
    [11] Shinar J, Turetsky V, Oshman Y. Integrated Estimation/Guidance Design Approach for Improved Homing Against Randomly Maneuvering Targets. Journal of Guidance, Control and Dynamics, 2007, 30(1): 154−161
    [12] Shinar J, Turetsky V. Three-Dimensional Validation of an Integrated Estimation/Guidance Algorithm Against Randomly Maneuvering Targets. Journal of Guidance, Control and Dynamics, 2009, 32(3): 1034−1039
    [13] Su M, Liu L, Wang Y. Integrated Estimation/Guidance Law Against Exoatmo-Spheric Maneuvering Targets. Complexity, 2018, 2018: 1−19
    [14] Zhu Y L, Fan H Q, Fan J P, Lu Z Q, F u, Q. Target Turning Maneuver Detection Using High Resolution Doppler Profile. IEEE Transactions on Aerospace and Electronic Systems, 2012, 48(1): 762−779
    [15] Fan S J, Xiao H T, Fan H Q, Fan J P. Target Maneuver Discrimination Using ISAR Image in Interception. Eurasip Journal on Advances in Signal Processing, 2016, 24(1): 1−13
    [16] Fan H Q, Zhu Y L, Fu Q. Impact of Mode Decision Delay on Estimation Error for Maneuvering Target Interception. IEEE Transactions on Aerospace and Electronic Systems, 2012, 47(1): 702−711
    [17] Xiang S W, Fan H Q, Fu Q. Impact of Mode Decision Delay on Estimation Error in Continuous-Time Controlled System. IEEE Access, 2018, 6: 73265−73272
    [18] Xiang S W, Li T C, Chen W, Fan H Q, Fu Q. Maximal Admissible Mode Decision Delay in Terminal Guidance. Chinese Journal of Aeronautics, 2019, 32(8): 1959−1966
    [19] Xiang S W, Fan H Q, Fu Q. Error distribution of zero-effort miss distance under mode mismatch. International Journal of Control, to be published.
    [20] 范红旗. 主动寻的制导中机动目标运动模式辨识技术[博士学位论文], 国防科学技术大学, 2015

    Fan H Q. Technology on Maneuvering Target Motion Model Identification in Active Homing Guidance. [Ph. D. dissertation], National University of Defense Technology, 2008
    [21] 樊世杰. 特征辅助的大机动目标拦截技术研究[博士学位论文], 国防科学技术大学, 2015

    Fan S J. Research on feature aided highly maneuvering target interception. [Ph. D. dissertation], National University of Defense Technology, 2015.
  • 加载中
计量
  • 文章访问数:  44
  • HTML全文浏览量:  5
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-09-05
  • 录用日期:  2020-12-01
  • 网络出版日期:  2020-12-22

目录

    /

    返回文章
    返回