[1]
|
Bondi P, Casalino G, Gambardella L. On the iterative learning control theory for robotic manipulators. IEEE Journal on Robotics and Automation, 1988, 4(1): 14-22. doi: 10.1109/56.767
|
[2]
|
Tayebi A. Adaptive iterative learning control for robot manipulators. Automatic, 2004, 40(7): 1195-1203. doi: 10.1016/j.automatica.2004.01.026
|
[3]
|
Wu B, Wang D, Poh E K. High precision satellite attitude tracking control via iterative learning control. Journal of guidance, control, and dynamics, 2015, 38(3): 528-534. doi: 10.2514/1.G000497
|
[4]
|
Hu Y N, Wei J M, Sun M M. Adaptive repetitive learning control for trajectory-keeping of satellite formation flying. Journal of Control & Decision, 2014, 1(4): 317-331.
|
[5]
|
徐建明, 王耀东, 孙明轩. 基于初次控制信号提取 的迭代学习控制方法. 自动化学报, 2020, 46(2): 294-306.Xu Jian-Ming, Wang Yao-Dong, Sun MingXuan. Iterative learning control based on extracting initial iterative control signals. Acta Automatica Sinica, 2020, 46(2): 294-306.
|
[6]
|
Arimoto S, Kawamura S, Miyazaki F. Better operation of robots by learning. Journal of Robotic Systems, 1984, 1(2): 123-140. doi: 10.1002/rob.4620010203
|
[7]
|
孙明轩, 黄宝健. 迭代学习控制. 北京: 国防工业出版社, 1999.Sun Ming-Xuan, Huang Bao-Jian. Iterative Learning Control. Beijing: National Defense Industry Press, 1999.
|
[8]
|
谢胜利, 田森平, 谢振东. 迭代学习控制的理论与应用. 北京: 科学出版社, 2005.Xie Sheng-Li, Tian Sen-Ping, Xie Zhen-Dong. Theory and Application of Iterative Learning Control. Beijing: Science Press, 2005.
|
[9]
|
Yu Q X, Hou Z S, Xu J X. D-type ilc based dynamic modeling and norm optimal ILC for highspeed trains. IEEE Transactions on Control Systems Technology, 2018, 26(2): 652-663. doi: 10.1109/TCST.2017.2692730
|
[10]
|
Xu J X, Xu J. On iterative learning from different tracking tasks in the presence of timevarying uncertainties. IEEE Transactions on Systems Man & Cybernetics Part B Cybernetics, 2004, 34(1): 589-597.
|
[11]
|
Tayebi A, Chien C. A unified adaptive iterative learning control framework for uncertain nonlinear systems. IEEE Transactions on Automatic Control, 2007, 52(10): 1907-1913. doi: 10.1109/TAC.2007.906215
|
[12]
|
朱胜, 孙明轩, 何熊熊. 严格反馈非线性时变系 统的迭代学习控制. 自动化学报, 2010, 36(3): 454-458. doi: 10.3724/SP.J.1004.2010.00454Zhu Sheng, Sun Ming-Xuan, He Xiong-Xiong. Iterative learning control of strict-feedback nonlinear time-varying systems. Acta Automatica Sinica, 2010, 36(3): 454-458. doi: 10.3724/SP.J.1004.2010.00454
|
[13]
|
Sun M X. A barbalat-like lemma with its application to learning control. IEEE Transactions on Automatic Control, 2009, 54(9): 2222-2225. doi: 10.1109/TAC.2009.2026849
|
[14]
|
吕庆. 抑制初态误差影响的自适应迭代学习控制. 自动化学报, 2015, 41(7): 1365-1372.Lv Qing. Adaptive iterative learning control for inhibition effect of initial state random error. Acta Automatica Sinica, 2015, 41(7): 1365-1372.
|
[15]
|
Xu J X, Tan Y. A composite energy functionbased learning control approach for nonlinear systems with time-varying parametric uncertainties. IEEE Transactions on Automatic Control, 2002, 47(11): 1940-1945. doi: 10.1109/TAC.2002.804460
|
[16]
|
Ji H H, Hou Z S, Zhang R K. Adaptive iterative learning control for high-speed rrains with unknown speed delays and input saturations. IEEE Transactions on Automation Science and Engineering, 2016, 13(1): 260-273. doi: 10.1109/TASE.2014.2371816
|
[17]
|
Sugie T, Ono T. An iterative learning control law for dynamical systems. Automatica, 1991, 27(4): 729-732. doi: 10.1016/0005-1098(91)90066-B
|
[18]
|
Chien C J, Hsu C T, Yao C Y. Fuzzy systembased adaptive iterative learning control for nonlinear plants with initial state errors. IEEE Transactions on Fuzzy Systems, 2004, 12(5): 724-732. doi: 10.1109/TFUZZ.2004.834806
|
[19]
|
Xu J X, Yan R. On initial conditions in iterative learning control. IEEE Transactions on Automatic Control, 2005, 50(9): 1349-1354. doi: 10.1109/TAC.2005.854613
|
[20]
|
Jin X. Nonrepetitive leader-follower formation tracking for multiagent systems with LOS range and angle constraints using iterative learning control. IEEE Transactions on Cybernetics, 2019, 49(5): 1748-1758. doi: 10.1109/TCYB.2018.2817610
|
[21]
|
孙明轩, 严求真. 迭代学习控制系统的误差跟踪设计方法. 自动化学报, 2013, 39(3): 251-262. doi: 10.1016/S1874-1029(13)60027-0Sun Ming-Xuan, Yan Qiu-Zhen. Error tracking of iterative learning control systems. Acta Automatica Sinica, 2013, 39(3): 251-262. doi: 10.1016/S1874-1029(13)60027-0
|
[22]
|
Sun M X, Wu T, Chen L J, Zhang G F. Neural AILC for error tracking against arbitrary initial shifts. IEEE Transactions on Neural Networks and Learning Systems, 2018, 29(7): 2705-2716. doi: 10.1109/TNNLS.2017.2698507
|
[23]
|
Chen Q, Shi H H, Sun M X. Echo state network-based backstepping adaptive iterative learning control for strict-feedback systems: an error-tracking approach. IEEE Transactions on Cybernetics, 2020, 50(7): 3009-3022. doi: 10.1109/TCYB.2019.2931877
|
[24]
|
Li X F, Xu J X, Huang D Q. An iterative learning control approach for linear systems with randomly varying trial lengths. IEEE Transactions on Automatic Control, 2014, 59(7): 1954-1960. doi: 10.1109/TAC.2013.2294827
|
[25]
|
Li X F, Xu J X. Lifted system framework for learning control with different trial lengths. International Journal of Automation & Computing, 2015, 12(3): 273-280.
|
[26]
|
Shen D, Zhang W, Wang Y Q, Chien C J. On almost sure and mean square convergence of p-type ILC under randomly varying iteration lengths. Automatica, 2016, 63(1): 359-365.
|
[27]
|
Shi J T, Xu J X, Sun J, Yang Y H. Iterative learning control for time-varying systems subject to variable pass lengths: application to robot manipulators. IEEE Transactions on Industrial Electronics, 2020, 67(10):8629-8637. doi: 10.1109/TIE.2019.2947838
|
[28]
|
Shen D, Xu J X. Adaptive learning control for nonlinear systems with randomly varying iteration lengths. IEEE Transactions on Neural Networks and Learning Systems, 2019, 30(4): 1119-1132. doi: 10.1109/TNNLS.2018.2861216
|
[29]
|
Jin X. Iterative learning control for MIMO nonlinear systems with iteration-varying trial lengths using modified composite energy function analysis. IEEE Transactions on Cybernetics, 2021, 51(12): 6080−6090
|
[30]
|
Zeng C, Shen D, Wang J R. Adaptive learning tracking for robot manipulators with varying trial lengths. Journal of the Franklin Institute, 2019, 356(12): 5993-6014. doi: 10.1016/j.jfranklin.2019.04.034
|