Sparse Signal Reconstruction Algorithm Based on Non-Convex Composite Function
-
摘要: 本文基于泛函深度作用的思想, 通过将两种非凸稀疏泛函进行复合, 构造了一种新的稀疏信号重构模型, 实现了对0范数的深度逼近. 综合运用MM技术、外点罚函数法和共轭梯度法, 提出了一种求解该模型的算法, 称为NCCS算法. 为降低重构信号陷入局部极值的可能性, 提出了在算法的每步迭代中以BP模型的解作为初始迭代值. 为验证所建模型和所提算法的有效性, 本文进行了多项数值实验. 实验结果表明: 相较于SL0算法、IRLS算法、SCSA算法以及BP算法等经典算法, 本文提出的算法在重构误差、信噪比、归一化均方差、支撑集恢复成功率等方面都有更优的表现.Abstract: Based on the idea of deep composition of functionals, this paper constructs a new sparse signal reconstruction model by combining two non-convex sparse functionals to achieve the depth of 0 norm approaching. Using the MM technology, the exterior penalty function method and the conjugate gradient method, an algorithm for solving the model is proposed, which is called the NCCS algorithm. In order to reduce the possibility of the reconstructed signal falling into a local extreme value, it is proposed to use the solution of the BP model as the initial iterative value in each iteration of the algorithm. To verify the effectiveness of the model and the proposed algorithm, a number of numerical experiments have been carried out in this paper. The experimental results show that compared with classic algorithms such as the SL0 algorithm, IRLS algorithm, SCSA algorithm and BP algorithm, the algorithm proposed in this paper has better performance in reconstruction error, signal-to-noise ratio, normalized mean square error, and support set recovery success rate.
-
表 1 五种算法的归一化均方差的数值记录
Table 1 Numerical record of the normalized mean square error of five algorithms
算法 归一化均方差$NMSE$ k=20 k=30 k=40 k=50 k=60 k=70 k=80 k=90 k=100 k=110 SL0 4.11E-10 2.86E-10 2.06E-10 1.55E-10 1.16E-10 9.38E-11 1.46E-04 1.28E-03 9.22E-03 3.13E-02 IRLS 2.02E-04 4.08E-04 1.15E-03 4.23E-03 1.07E-02 2.79E-02 5.04E-02 7.20E-02 1.14E-01 1.38E-01 BP 1.65E-22 4.49E-22 5.68E-22 4.95E-22 4.19E-22 4.38E-15 1.18E-05 9.52E-04 1.03E-02 3.57E-02 SCSA 2.05E-23 1.94E-22 1.94E-22 2.45E-22 2.50E-22 2.96E-22 3.18E-22 1.27E-16 1.27E-13 3.57E-12 NCCS 5.36E-27 2.10E-26 4.81E-24 4.98E-24 5.87E-15 1.85E-17 3.35E-16 2.62E-17 3.58E-16 1.00E-16 -
[1] Donoho D L. Compressed sensing. IEEE Transactions on Information Theory, 2006, 52(4): 1289−1306 doi: 10.1109/TIT.2006.871582 [2] Gross D, Liu R K, Flammia R T, Becker R, Eisert R. Quantum state tomography via compressed sensing. Physical Review Letters, 2010, 105(15): 150401 doi: 10.1103/PhysRevLett.105.150401 [3] Wiaux Y, Jacques L, Puy G, Scaife A M M, Vandergheynst P. Compressed sensing imaging techniques for radio interf- erometry. Monthly Notices of the Royal Astronomical Soci- ety, 2010, 395(3): 1733−1742 [4] Lustig M, Donoho D, Pauly J M. Sparse MRI: The applica- tion of compressed sensing for rapid MR imaging. Magnet- ic Resonance in Medicine, 2010, 58(6): 1182−1195 [5] Shi Bao-Shun, Lian Qiu-Sheng, Chen Shu-Zhen. Compres- sed sensing magnetic resonance imaging based on dictionary updating and block matching and three dimensional filtering regularization. Image Processing Iet, 2016, 10(1): 68−79 doi: 10.1049/iet-ipr.2014.0870 [6] Herman M, Strohmer T. High-Resolution Radar via Compr- essed Sensing. IEEE Transactions on Signal Processing, 2009, 57(6): 2275−2284 doi: 10.1109/TSP.2009.2014277 [7] Chartrand R. Exact reconstruction of sparse signals via nonconvex minimization. IEEE Signal Processing letters, 2007, 14(10): 707−710 doi: 10.1109/LSP.2007.898300 [8] Peng Ji-Gen, Yue, Shi-Gang, Li Hai-Yang. NP/CMP equivalence: A phenomenon hidden among sparsity models ℓ0 minimization and ℓP minimization for information processing. IEEE Transactions on Information Theory, 2015, 61(7): 4028−4033 doi: 10.1109/TIT.2015.2429611 [9] Tropp J A, Gilbert A C. Signal Recovery From Random Measurements Via Orthogonal Matching Pursuit. IEEE Tr- ansactions on Information Theory, 2007, 53(12): 4655−4666 doi: 10.1109/TIT.2007.909108 [10] Beck A, Teboulle M. A Fast Iterative Shrinkage Thresholdi- ng Algorithm for Linear Inverse Problems. Siam J Imaging sciences, 2009, 2(1): 183−202 doi: 10.1137/080716542 [11] Dai W, Milenkovic O. Subspace Pursuit for Compressive Sensing Signal Reconstruction. IEEE Transactions on Information Theory, 2009, 55(5): 2230−2249 doi: 10.1109/TIT.2009.2016006 [12] Saadat S A, Safari A, Needell D. Sparse Reconstruction of Regional Gravity Signal Based on Stabilized Orthogonal Matching Pursuit (SOMP). Pure and Applied Geophysics, 2016, 173(6): 2087−2099 doi: 10.1007/s00024-015-1228-1 [13] Figueiredo M A T, Nowak R D, Wright S J. Gradient Projection for Sparse Reconstruction: Application to Comp- ressed Sensing and Other Inverse Problems. IEEE Journal of Selected Topics in Signal Processing, 2008, 1(4): 586−597 [14] Foucart S, Rauhut H, Rauhut H. A mathematical introducti- on to compressive sensing. Springer New York, 2013, 5: 65−75 [15] Emmanuel J C, Michael B W, Stephen P B. Enhancing spa- rsity by reweighted L1 minimization. Journal of Fourier Analysis and Applications, 2008, 14(5): 877−905 [16] Chartrand R, Yin W. Iteratively reweighted algorithms for compressive sensing. In: Proceedings of the IEEE Internati- onal Conference on Acoustics, USA: IEEE, 2008.3869−3872. [17] Zhang Z, Xu Y, Yang J, Li X, Zhang D. A Survey of Sparse Representation: Algorithms and Applications. IEEE Access, 2017, 3: 490−530 [18] Chen S S, Donoho D L, Saunders M A. Atomic decompos- etion by basis pursuit. SIAM Review, 2001, 43(1): 129−159 doi: 10.1137/S003614450037906X [19] Chartrand R, Staneva V. Restricted isometry properties and nonconvex compressive sensing. Inverse Problems, 2010, 24(3): 657−682 [20] 赵瑞珍, 林婉娟, 李浩, 胡绍海. 基于光滑ℓ0范数和修正牛顿法的压缩感知重建算法. 计算机辅助设计与图形学学报, 2012, 24(4): 478−484 doi: 10.3969/j.issn.1003-9775.2012.04.008Zhao Rui-Zhen, Lin Wan-Juan, Li Hao, Hu Shao-Hai. Reco- nstruction Algorithm for Compressive Sensing Based on Smoothed ℓ0 Norm and Revised Newton Method. Journal of Computer-Aided Design & Computer Graphics, 2012, 24(4): 478−484 doi: 10.3969/j.issn.1003-9775.2012.04.008 [21] Mohimani H, Babaie Z M, Jutten C. A Fast Approach for Overcomplete Sparse Decomposition Based on Smoothed L0 Norm. IEEE Transactions on Signal Processing, 2009, 57(1): 289−301 doi: 10.1109/TSP.2008.2007606 [22] Zhang C J, Hao D B, Hou C B, Yin X J. A New Approach for Sparse Signal Recovery in Compressed Sensing Based on Minimizing Composite Trigonometric Function. IEEE Access, 2018, 6: 44894−44904 doi: 10.1109/ACCESS.2018.2855958 [23] Malek M M, Babaie M, Koochakzadeh A, Jansson M, Rojas C R. Successive Concave Sparsity Approximation for Compressed Sensing. IEEE Transactions on Signal Proces- sing, 2016, 64(21): 5657−5671 doi: 10.1109/TSP.2016.2585096 [24] Li Hai-Yang, Zhang Qian, Cui An-Gang, Peng Ji-Gen. Mi- nimization of Fraction Function Penalty in Compressed Se- nsing. IEEE Transactions on Neural Networks, 2020, 31(5): 1626−1637 doi: 10.1109/TNNLS.2019.2921404 [25] Hunter D R, Lange K. A Tutorial on MM Algorithms. The American Statistician, 2004, 58(1): 30−37 doi: 10.1198/0003130042836 [26] Al-Naffouri T Y, Masood M. Distribution agnostic structu- red sparsity recovery algorithms. In: Proceedings of the 8th International Workshop on Systems, Signal Processing and their Applications (WoSSPA). Algiers: IEEE, 2013. 283−290. [27] 陈金立, 李伟, 朱筱嵘, 陈宣, 李家强. 基于修正近似双曲正切函数的平滑ℓ0范数算. 计算机工程与设计, 2018, 39(12): 3717−3721+3754.Chen Jin-Li, Li Wei, Zhu Xiao-Rong, Chen Xuan, Li Jia-Q- iang. Smooth ℓ0 norm calculation based on modified appr- oximate hyperbolic tangent function. Computer engineerin- g and design, 2018, 39(12): 3717−3721+3754. [28] Elad M. Sparse and Redundant Representations: From Th- eory to Applications in Signal and Image Processing. New York: Springer, 2010. 28−43. [29] Emmanuel J, Michael B W, Stephen P B. Enhancing Sparsity by Reweighted ℓ1 Minimization. Journal of Fourier Anal- ysis & Applications, 2007, 14(5): 877−905 [30] 袁亚湘, 孙文瑜. 北京: 最优化理论与方法. 科学出版社, 1997. 455−482Yuan Ya-Xiang, Sun Wen-Yu. Optimization theory and method. Beijing: Science Press, 1997. 455−82 [31] F. H. Clarke. Optimization and non-smooth analysis. New York: Classics in Applied Mathematics, SIAM, 1983. 37−187. -

计量
- 文章访问数: 93
- HTML全文浏览量: 18
- 被引次数: 0