2.793

2018影响因子

(CJCR)

  • 中文核心
  • EI
  • 中国科技核心
  • Scopus
  • CSCD
  • 英国科学文摘

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

复杂装备系统弹性度量方法研究

杨博帆 张琳 汪文峰 唐东丽 丁尔启 项阳

杨博帆, 张琳, 汪文峰, 唐东丽, 丁尔启, 项阳. 复杂装备系统弹性度量方法研究. 自动化学报, 2021, 47(x): 1−9 doi: 10.16383/j.aas.c200642
引用本文: 杨博帆, 张琳, 汪文峰, 唐东丽, 丁尔启, 项阳. 复杂装备系统弹性度量方法研究. 自动化学报, 2021, 47(x): 1−9 doi: 10.16383/j.aas.c200642
Yang Bo-Fan, Zhang Lin, Wang Wen-Feng, Tang Dong-Li, Ding Er-Qi, Xiang Yang. Research on resilience measurement method of complex equipment system. Acta Automatica Sinica, 2021, 47(x): 1−9 doi: 10.16383/j.aas.c200642
Citation: Yang Bo-Fan, Zhang Lin, Wang Wen-Feng, Tang Dong-Li, Ding Er-Qi, Xiang Yang. Research on resilience measurement method of complex equipment system. Acta Automatica Sinica, 2021, 47(x): 1−9 doi: 10.16383/j.aas.c200642

复杂装备系统弹性度量方法研究

doi: 10.16383/j.aas.c200642
基金项目: 陕西省自然科学基础研究计划 (2019JQ-708)资助
详细信息
    作者简介:

    杨博帆:空军工程大学博士研究生, 94221部队工程师. 主要研究方向是军事装备基础理论和弹性工程理论. E-mail: yangbofan508@hotmail.com

    张琳:空军工程大学防空反导学院教授. 主要研究方向是军事装备基础理论. E-mail: csdmmsh0@163.com

    汪文峰:空军工程大学防空反导学院副教授. 主要研究方向是装备保障信息化. 本文通信作者. E-mail: rfvmju01@163.com

    唐东丽:空军工程大学防空反导学院助教. 主要研究方向是控制科学与工程. E-mail: 13402936052@163.com

    丁尔启:空军工程大学防空反导学院副教授. 主要研究方向是军事装备基础理论. E-mail: 245244043@qq.com

    项阳:94221部队工程师. 主要研究方向是装备维修保障基础理论. E-mail: 47205587@qq.com

Research on Resilience Measurement Method of Complex Equipment System

Funds: Supported by Shaanxi Provincial Natural Science Basic Research Program (2019JQ-708)
  • 摘要: 由于复杂装备系统缺少可工程应用的弹性度量方法, 且传统可靠性工程难以描述装备从故障到修复全过程的性质, 因此考虑装备系统在工作过程中性能变化的连续性以及扰动、故障和修复的不确定性, 利用可靠性工程相关参数, 针对无子系统的简单装备提出了一种混合型弹性度量方法. 在此基础上, 考虑子系统对复杂系统的影响, 以及复杂系统故障和修复概率, 提出了一种针对复杂装备系统的弹性度量方法. 最后, 通过基于弹性理论的组件重要度计算案例, 评估复杂装备系统各个子系统性能变化对整个装备的影响重要程度, 验证了方法的可行性和有效性.
  • 图  1  弹性过程示意图

    Fig.  1  The resilience process

    图  2  混合型度量示意图

    Fig.  2  Hybrid metrics

    图  3  装备系统弹性过程

    Fig.  3  Resilience process of equipment system

    图  4  弹性期望变化情况

    Fig.  4  Changes of resilience expectation

    图  5  弹性期望变化速度

    Fig.  5  The rate of changes of resilience expectation

    图  6  含有7个子系统的复杂传输系统网络拓扑结构

    Fig.  6  Network topology of complex transport system with 7 subsystems

    图  7  含有2个子系统的弹性过程

    Fig.  7  Resilience process with 2 subsystems

    图  8  含有子系统的复杂系统弹性过程

    Fig.  8  Resilience process of complex system with subsystems

    图  9  系统性能变化曲线

    Fig.  9  System performance change curve

    图  10  含有12个子系统的复杂传输系统网络拓扑结构

    Fig.  10  Network topology of complex transport system with 12 subsystems

    图  11  系统弹性变化

    Fig.  11  The changes of system resilience

    图  12  组件重要度和系统弹性

    Fig.  12  The normalized importance of subsystems

    表  1  复杂系统可靠性参数

    Table  1  Reliability parameters complex system

    序号123456789101112
    PF2%2%3%5%3%2%3%4%2%4%3%1%
    PR70%80%80%70%75%85%80%75%80%85%75%65%
    MTTR2 h3 h2.5 h2 h2.5 h3.5 h3 h2.5 h2 h3 h2.5 h2 h
    MTBF8 h7 h7.5 h8 h7.5 h6.5 h7 h7.5 h8 h7 h7.5 h8 h
    下载: 导出CSV

    表  2  故障和修复子系统集合(部分)

    Table  2  The sets of failed and repaired subsystems(portion)

    XY
    $\emptyset $$\emptyset $
    [1]$\emptyset $, [1]
    [1, 2]$\emptyset $, [1], [2], [1, 2]
    [1, 2, 3]$\emptyset $, [1], [2], [3], [1, 2], [1, 3], [2, 3], [1, 2, 3]
    [1, 2, 3, 4]$\emptyset $, [1], [2], [3], [4], [1, 2], [1, 3], [1, 4], [2, 3], [2, 4], [3, 4], [1, 2, 3], [1, 2, 4], [1, 3, 4], [2, 3, 4], [1, 2, 3, 4]
    …………
    下载: 导出CSV

    表  3  归一化的子系统重要度

    Table  3  The normalized importance of subsystems

    123456789101112
    RF0.01880.01370.01890.02380.02390.01880.01720.01880.01880.01040.02230.0137
    CIR0.98810.99530.98800.98090.98080.98810.99040.98810.98811.00000.98310.9953
    下载: 导出CSV
  • [1] Feng G, Edoardo P, Michael B, Frank G. Imprecise system reliability and component importance based on survival signature. Reliability Engineering and System Safety, 2016, 150: 116−25 doi: 10.1016/j.ress.2016.01.019
    [2] Cats O, Koppenol G J, Warnier M. Robustness assessment of link capacity reduction for complex networks: Application for public transport systems. Reliability Engineering and System Safety, 2017, 167: 544−53 doi: 10.1016/j.ress.2017.07.009
    [3] Jiang W, Xie C H, Zhuang M Y, Shou Y H, Tang Y C. Sensor data fusion with Z-numbers and its application in fault diagnosis. Sensors (Basel, Switzerland), 2016, 16(9): 1509 doi: 10.3390/s16091509
    [4] Holling C S. Resilience and stability of ecological systems. Annual Review of Ecology and Systematics, 1973, 4(1): 1−23 doi: 10.1146/annurev.es.04.110173.000245
    [5] Leveson N. A new accident model for engineering safer systems. Safety Science, 2004, 42(4): 237−270 doi: 10.1016/S0925-7535(03)00047-X
    [6] Aven T. On some recent definitions and analysis frameworks for risk, vulnerability, and resilience. Risk Anal, 2011, 31(4): 515−22 doi: 10.1111/j.1539-6924.2010.01528.x
    [7] Neches R. Engineered Resilient Systems DoD Science and Technology Priority Area. Washington DC: Office of the Deputy Assistant Secretary of Defense for Systems Engineering, 2012.
    [8] Scott L. Engineered Resilient Systems DoD Science and Technology Priority. Washington DC: Office of the Deputy Assistant Secretary of Defense for Systems Engineering, 2012.
    [9] Carlson L, Bassett G, Buehring W, Collins M, Folga S, Haffenden B, et al. Resilience: Theory and Application. Chicago: Argonne National Laboratory, 2012.
    [10] Henry D, Emmanuel R J. Generic metrics and quantitative approaches for system resilience as a function of time. Reliability Engineering and System Safety, 2012, 99: 114−122 doi: 10.1016/j.ress.2011.09.002
    [11] Goerger S R, Madni A M, Eslinger O J. Engineered resilient systems: A DoD perspective. Procedia Computer Science, 2014, 28: 865−872 doi: 10.1016/j.procs.2014.03.103
    [12] 蓝羽石, 周光霞, 王珩, 等. 韧性指挥信息系统构建机理及实现研究. 指挥与控制学报, 2015, 1(3): 284−291

    Lan Yu-Shi, Zhou Guang-Xia, Wang Heng, et al. Construction mechanism and implementation of resilient command information system. Journal of Command and Control, 2015, 1(3): 284−291
    [13] 费爱国. 韧性指挥与控制系统设计相关问题探析. 指挥信息系统与技术, 2017, 8(2): 1−4

    Fei Ai-Guo. Analysis on related issue about resilient command and control system design. Command Information System and Technology, 2017, 8(2): 1−4
    [14] 崔琼, 李建华. 网络化指挥信息系统弹性度量方法. 军事运筹与系统工程, 2016, 30(4): 20−26, 50

    Cui Qiong, Li Jian-Hua. Resilience measurement of networked command information system. Military Opsearch and System Engineering, 2016, 30(4): 20−26, 50
    [15] 杨飞生, 汪璟, 潘泉, 康沛沛. 网络攻击下信息物理融合电力系统的弹性事件触发控制. 自动化学报, 2019, 45(1): 110−119

    Yang Fei-Sheng, Wang Jing, Pan Quan, Kang Pei-Pei. Resilient event-triggered control of grid cyber-physical systems against cyber attack. Acta Automatica Sinica, 2019, 45(1): 110−119
    [16] Toroghi S S H, Thomas V M. A Framework for the Resilience Analysis of Electric Infrastructure Systems Including Temporary Generation Systems. Reliability Engineering and System Safety, 2020, 202: 107013 doi: 10.1016/j.ress.2020.107013
    [17] Azarbahram A, Amini A, Sojoodi M. Resilient fixed-order distributed dynamic output feedback load frequency control design for interconnected multi-area power systems. IEEE-CAA Journal of Automatica Sinica, 2019, 6(5): 1139−1151 doi: 10.1109/JAS.2019.1911687
    [18] Mishra S, Anderson K, Miller B, Boyer K, Warren A. Microgrid resilience: A holistic approach for assessing threats, identifying vulnerabilities, and designing corresponding mitigation strategies. Applied Energy, 2020, 264: 114726 doi: 10.1016/j.apenergy.2020.114726
    [19] Patriarca R, Bergström J, Gravio G D, Costantino F. Resilience engineering: Current status of the research and future challenges. Safety Science, 2018, 102: 79−100 doi: 10.1016/j.ssci.2017.10.005
    [20] Li X, Zhao P, Li L. Resilience and reliability analysis of P2P network systems. Operations Research Letters, 2010, 38(1): 20−26 doi: 10.1016/j.orl.2009.09.006
    [21] Tran H T, Balchanos M, Domercant J C, Mavris D N. A framework for the quantitative assessment of performance-based system resilience. Reliability Engineering and System Safety, 2017, 158: 73−84 doi: 10.1016/j.ress.2016.10.014
    [22] 李瑞莹, 杜时佳, 康锐. 复杂系统弹性建模与评估. 北京: 化学工业出版社, 2019.

    Li Rui-Ying, Du Shi-Jia, Kang Rui. Modeling and Evaluation of Complex System Resilience. Beijing: Chemical Industry Press, 2019.
    [23] Jin C, Li R, Kang R. Analysis and comparison of three measures for system resilience. In: Proceedings of European Safety and Reliability Conference. Glasgow, UK, 2016.2145−2151.
    [24] Bruneau M, Chang S E, Eguchi R T, Lee G C, O’Rourke T D, Reinhorn A M, et al. A Framework to Quantitatively Assess and Enhance the Seismic Resilience of Communities. Earthquake Spectra, 2003, 19(4): 733−752 doi: 10.1193/1.1623497
    [25] Cimellaro G P, Reinhorn A M, Bruneau M. Seismic resilience of a hospital system. Structure and Infrastructure Engineering, 2010, 6(1-2): 127−144 doi: 10.1080/15732470802663847
    [26] 黄浪, 吴超, 王秉. 系统安全韧性的塑造与评估建模. 中国安全生产科学技术, 2016, 12(12): 15−21

    Huang Lang, Wu Chao, Wang Bing. Modeling on shaping and assessment of system safety resilience. Journal of Safety Science and Technology, 2016, 12(12): 15−21
    [27] Reed D A, Kapur K C, Christie R D. Methodology for assessing the resilience of networked infrastructure. IEEE Systems Journal, 2009, 3(2): 174−180 doi: 10.1109/JSYST.2009.2017396
    [28] Zobel C W. Representing perceived tradeoffs in defining disaster resilience. Decision Support Systems, 2011, 50(2): 394−403 doi: 10.1016/j.dss.2010.10.001
    [29] Zobel C, Khansa L. Characterizing Multi-event disaster resilience. Computers and Operations Research, 2014, 42: 83−94 doi: 10.1016/j.cor.2011.09.024
    [30] Ouyang M, Duenas-Osorio L, Min X. A three-stage resilience analysis framework for urban infrastructure systems. Structural Safety, 2012, 36: 23−31
    [31] Ouyang M, Wang Z. Resilience assessment of interdependent infrastructure systems: With a focus on joint restoration modeling and analysis. Reliability Engineering and System Safety, 2015, 141: 74−82 doi: 10.1016/j.ress.2015.03.011
    [32] Li Z L, Jin C, Hu P, Wang C. Resilience-based transportation network recovery strategy during emergency recovery phase under uncertainty. Reliability Engineering and System Safety, 2019, 188: 503−514 doi: 10.1016/j.ress.2019.03.052
    [33] Chang S E, Shinozuka M. Measuring improvements in the disaster resilience of communities. Earthquake Spectra, 2004, 20(3): 739−755 doi: 10.1193/1.1775796
    [34] Li Y, Lence B J. Estimating resilience of water resources systems. Water Resource Research, 2007, 43(7): 1−11
    [35] 石建伟, 刘俊先, 姜志平, 权冀川. 基于超网络的军事体系韧性评估. 指挥与控制学报, 2017, 3(3): 213−217 doi: 10.3969/j.issn.2096-0204.2017.03.0213

    Shi Jian-Wei, Liu Jun-Xian1 Jiang Zhi-Ping, Quan Ji-Chuan. Evaluating military system of systems resilience using super networks. Journal of Command and Control, 2017, 3(3): 213−217 doi: 10.3969/j.issn.2096-0204.2017.03.0213
    [36] 崔琼, 李建华, 冉淏丹, 南明莉. 基于任务能力的指挥信息系统超网络弹性度量. 指挥与控制学报, 2017, 3(2): 137−143 doi: 10.3969/j.issn.2096-0204.2017.02.0137

    Cui Qiong, Li Jian-Hua, Ran Hao-Dan, Nan Ming-Li. Resilience measurement of command information system super-network based on mission capability. Journal of Command and Control, 2017, 3(2): 137−143 doi: 10.3969/j.issn.2096-0204.2017.02.0137
    [37] 荣明, 胡晓峰, 杨镜宇. 基于试验床的作战体系弹性评估研究. 系统仿真学报, 2018, 30(12): 4711−4717

    Rong Ming, Hu Xiao-Feng, Yang Jing-Yu. Research on assessment of operation system’s resilience based on test bed. Journal of System Simulation, 2018, 30(12): 4711−4717
    [38] Zhang C, Xu X, Dui H. Resilience Measure of Network Systems by Node and Edge Indicators. Reliability Engineering and System Safety, 2020, 202: 107035 doi: 10.1016/j.ress.2020.107035
    [39] 康建设, 宋文渊, 白永生, 田霞. 装备可靠性工程. 北京: 国防工业出版社, 2019.

    Kang Jian-She, Song Wen-Yuan, Bai Yong-Sheng, Tian Xia. Equipment Reliability Engineering. Beijing: National Defense Industry Press, 2019.
    [40] John C W, Jose E R-M. Resiliency as a component importance measure in network reliability. Reliability Engineering and System Safety, 2009, 94: 1685−1693 doi: 10.1016/j.ress.2009.05.001
    [41] 潘星, 张国忠, 张跃东, 康锐. 工程弹性系统与系统弹性理论研究综述. 系统工程与电子技术, 2019, 41(9): 2008−2015

    Pan Xing, Zhang Guo-Zhong, Zhang Yue-Dong, Kang Rui. Review of engineered resilient systems and system resilience theory. System Engineering and Electronics, 2019, 41(9): 2008−2015
  • 加载中
计量
  • 文章访问数:  12
  • HTML全文浏览量:  8
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-08-13
  • 录用日期:  2021-01-15
  • 网络出版日期:  2021-02-05

目录

    /

    返回文章
    返回