2.845

2023影响因子

(CJCR)

  • 中文核心
  • EI
  • 中国科技核心
  • Scopus
  • CSCD
  • 英国科学文摘

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

复杂装备系统弹性度量方法研究

杨博帆 张琳 汪文峰 唐冬丽 丁尔启 项阳

杨博帆, 张琳, 汪文峰, 唐冬丽, 丁尔启, 项阳. 复杂装备系统弹性度量方法研究. 自动化学报, 2023, 49(7): 1498−1507 doi: 10.16383/j.aas.c200642
引用本文: 杨博帆, 张琳, 汪文峰, 唐冬丽, 丁尔启, 项阳. 复杂装备系统弹性度量方法研究. 自动化学报, 2023, 49(7): 1498−1507 doi: 10.16383/j.aas.c200642
Yang Bo-Fan, Zhang Lin, Wang Wen-Feng, Tang Dong-Li, Ding Er-Qi, Xiang Yang. Research on resilience measurement method of complex equipment system. Acta Automatica Sinica, 2023, 49(7): 1498−1507 doi: 10.16383/j.aas.c200642
Citation: Yang Bo-Fan, Zhang Lin, Wang Wen-Feng, Tang Dong-Li, Ding Er-Qi, Xiang Yang. Research on resilience measurement method of complex equipment system. Acta Automatica Sinica, 2023, 49(7): 1498−1507 doi: 10.16383/j.aas.c200642

复杂装备系统弹性度量方法研究

doi: 10.16383/j.aas.c200642
基金项目: 陕西省自然科学基础研究计划 (2019JQ-708)资助
详细信息
    作者简介:

    杨博帆:空军工程大学博士研究生, 94221部队工程师. 主要研究方向为军事装备基础理论和弹性工程理论. E-mail: yangbofan508@hotmail.com

    张琳:空军工程大学防空反导学院教授. 主要研究方向为军事装备基础理论. E-mail: csdmmsh0@163.com

    汪文峰:空军工程大学防空反导学院副教授. 主要研究方向为装备保障信息化. 本文通信作者. E-mail: rfvmju01@163.com

    唐冬丽:空军工程大学防空反导学院助教. 主要研究方向为控制科学与工程. E-mail: 13402936052@163.com

    丁尔启:空军工程大学防空反导学院副教授. 主要研究方向为军事装备基础理论. E-mail: maliping@xisu.edu.cn

    项阳:94221部队工程师. 主要研究方向为装备维修保障基础理论. E-mail: xy47205587@sina.com

Research on Resilience Measurement Method of Complex Equipment System

Funds: Supported by Shaanxi Provincial Natural Science Basic Research Program (2019JQ-708)
More Information
    Author Bio:

    YANG Bo-Fan Ph.D. candidate at Air Force Engineering University and engineer of Unit 94221 of the PLA. His research interest covers basic theory of military equipment and resilience engineering theory

    ZHANG Lin Professor at the Air and Missile Defense College, Air Force Engineering University. His main research interest is basic theory of military equipment

    WANG Wen-Feng Associate professor at the Air and Missile Defense College, Air Force Engineering University. His main research interest is informatization of equipment support. Corresponding author of this paper

    TANG Dong-Li Teaching assistant at the Air and Missile Defense College, Air Force Engineering University. His main research interest is control science and engineering

    DING Er-Qi Associate professor at the Air and Missile Defense College, Air Force Engineering University. His main research interest is basic theory of military equipment

    XIANG Yang Engineer of Unit 94221 of the PLA. His main research interest is basic theory of equipment maintenance support

  • 摘要: 由于复杂装备系统缺少可工程应用的弹性度量方法, 且传统可靠性工程难以描述装备从故障到修复全过程的性质, 因此考虑装备系统在工作过程中性能变化的连续性以及扰动、故障和修复的不确定性, 利用可靠性工程相关参数, 针对无子系统的简单装备提出一种混合型弹性度量方法. 在此基础上, 考虑子系统对复杂系统的影响, 以及复杂系统故障和修复概率, 提出一种针对复杂装备系统的弹性度量方法. 最后, 通过基于弹性理论的组件重要度计算案例, 评估复杂装备系统各个子系统性能变化对整个装备的影响重要程度, 验证了方法的可行性和有效性.
  • 图  1  弹性过程示意图

    Fig.  1  The resilience process

    图  2  混合型度量示意图

    Fig.  2  Hybrid metrics

    图  3  装备系统弹性过程

    Fig.  3  Resilience process of equipment system

    图  4  弹性期望变化情况

    Fig.  4  Changes of resilience expectation

    图  5  弹性期望变化速度

    Fig.  5  The rate of changes of resilience expectation

    图  6  含有7个子系统的复杂传输系统网络拓扑结构

    Fig.  6  Network topology of complex transport system with 7 subsystems

    图  7  含有2个子系统的弹性过程

    Fig.  7  Resilience process with 2 subsystems

    图  8  含有子系统的复杂系统弹性过程

    Fig.  8  Resilience process of complex system with subsystems

    图  9  系统性能变化曲线

    Fig.  9  System performance change curve

    图  10  含有12个子系统的复杂传输系统网络拓扑结构

    Fig.  10  Network topology of complex transport system with 12 subsystems

    图  11  系统弹性变化

    Fig.  11  The changes of system resilience

    图  12  组件重要度和系统弹性

    Fig.  12  Component importance and system resilience

    表  1  复杂系统可靠性参数

    Table  1  Reliability parameters complex system

    序号 PF (%) PR (%) MTTR (h) MTBF (h)
    1 2 70 2.0 8.0
    2 2 80 3.0 7.0
    3 3 80 2.5 7.5
    4 5 70 2.0 8.0
    5 3 75 2.5 7.5
    6 2 85 3.5 6.5
    7 3 80 3.0 7.0
    8 4 75 2.5 7.5
    9 2 80 2.0 8.0
    10 4 85 3.0 7.0
    11 3 75 2.5 7.5
    12 1 65 2.0 8.0
    下载: 导出CSV

    表  2  故障和修复子系统集合(部分)

    Table  2  The sets of failed and repaired subsystems (portion)

    XY
    $\emptyset $$\emptyset $
    [1]$\emptyset $, [1]
    [1, 2]$\emptyset $, [1], [2], [1, 2]
    [1, 2, 3]$\emptyset $, [1], [2], [3], [1, 2], [1, 3], [2, 3], [1, 2, 3]
    [1, 2, 3, 4]$\emptyset $, [1], [2], [3], [4], [1, 2], [1, 3], [1, 4],
    [2, 3], [2, 4], [3, 4], [1, 2, 3], [1, 2, 4],
    [1, 3, 4], [2, 3, 4], [1, 2, 3, 4]
    ${\bf{\vdots } }$${\bf{\vdots} }$
    下载: 导出CSV

    表  3  归一化的子系统重要度

    Table  3  The normalized importance of subsystems

    序号 RF CIR
    1 0.0188 0.9881
    2 0.0137 0.9953
    3 0.0189 0.9880
    4 0.0238 0.9809
    5 0.0239 0.9808
    6 0.0188 0.9881
    7 0.0172 0.9904
    8 0.0188 0.9881
    9 0.0188 0.9881
    10 0.0104 1.0000
    11 0.0223 0.9831
    12 0.0137 0.9953
    下载: 导出CSV
  • [1] Feng G, Patelli E, Beer M, Coolen F P A. Imprecise system reliability and component importance based on survival signature. Reliability Engineering & System Safety, 2016, 150: 116-125
    [2] Cats O, Koppenol G J, Warnier M. Robustness assessment of link capacity reduction for complex networks: Application for public transport systems. Reliability Engineering & System Safety, 2017, 167: 544-553
    [3] Jiang W, Xie C H, Zhuang M Y, Shou Y H, Tang Y C. Sensor data fusion with Z-numbers and its application in fault diagnosis. Sensors, 2016, 16(9): Article No. 1509 doi: 10.3390/s16091509
    [4] Holling C S. Resilience and stability of ecological systems. Annual Review of Ecology and Systematics, 1973, 4: 1-23 doi: 10.1146/annurev.es.04.110173.000245
    [5] Leveson N. A new accident model for engineering safer systems. Safety Science, 2004, 42(4): 237-270 doi: 10.1016/S0925-7535(03)00047-X
    [6] Aven T. On some recent definitions and analysis frameworks for risk, vulnerability, and resilience. Risk Analysis, 2011, 31(4): 515-522 doi: 10.1111/j.1539-6924.2010.01528.x
    [7] Neches R. Engineered Resilient Systems DoD Science and Technology Priority Area. Washington: Office of the Deputy Assistant Secretary of Defense for Systems Engineering, 2012
    [8] Scott L. Engineered Resilient Systems DoD Science and Technology Priority. Washington: Office of the Deputy Assistant Secretary of Defense for Systems Engineering, 2012
    [9] Carlson J, Bassett G, Buehring W, Collins M, Folga S, Haffenden B, et al. Resilience: Theory and Application, Technical Report: ANL/DIS-12-1, Argonne National Laboratory, 2012
    [10] Henry D, Ramirez-Marquez J E. Generic metrics and quantitative approaches for system resilience as a function of time. Reliability Engineering & System Safety, 2012, 99: 114-122
    [11] Goerger S R, Madni A M, Eslinger O J. Engineered resilient systems: A DoD perspective. Procedia Computer Science, 2014, 28: 865-872 doi: 10.1016/j.procs.2014.03.103
    [12] 蓝羽石, 周光霞, 王珩, 易侃. 韧性指挥信息系统构建机理及实现研究. 指挥与控制学报, 2015, 1(3): 284-291

    Lan Yu-Shi, Zhou Guang-Xia, Wang Heng, Yi Kan. Construction mechanism and implementation of resilient command information systems. Journal of Command and Control, 2015, 1(3): 284-291
    [13] 费爱国. 韧性指挥与控制系统设计相关问题探析. 指挥信息系统与技术, 2017, 8(2): 1-4

    Fei Ai-Guo. Analysis on related issues about resilient command and control system design. Command Information System and Technology, 2017, 8(2): 1-4
    [14] 崔琼, 李建华. 网络化指挥信息系统弹性度量方法. 军事运筹与系统工程, 2016, 30(4): 18-24, 48

    Cui Qiong, Li Jian-Hua. Resilience measurement of networked command information system. Military Operations Research and Assessment, 2016, 30(4): 18-24, 48
    [15] 杨飞生, 汪璟, 潘泉, 康沛沛. 网络攻击下信息物理融合电力系统的弹性事件触发控制. 自动化学报, 2019, 45(1): 110-119

    Yang Fei-Sheng, Wang Jing, Pan Quan, Kang Pei-Pei. Resilient event-triggered control of grid cyber-physical systems against cyber attack. Acta Automatica Sinica, 2019, 45(1): 110-119
    [16] Toroghi S S H, Thomas V M. A framework for the resilience analysis of electric infrastructure systems including temporary generation systems. Reliability Engineering & System Safety, 2020, 202: Article No. 107013
    [17] Azarbahram A, Amini A, Sojoodi M. Resilient fixed-order distributed dynamic output feedback load frequency control design for interconnected multi-area power systems. IEEE/CAA Journal of Automatica Sinica, 2019, 6(5): 1139-1151 doi: 10.1109/JAS.2019.1911687
    [18] Mishra S, Anderson K, Miller B, Boyer K, Warren A. Microgrid resilience: A holistic approach for assessing threats, identifying vulnerabilities, and designing corresponding mitigation strategies. Applied Energy, 2020, 264: Article No. 114726 doi: 10.1016/j.apenergy.2020.114726
    [19] Patriarca R, Bergström J, Di Gravio G, Costantino F. Resilience engineering: Current status of the research and future challenges. Safety Science, 2018, 102: 79-100 doi: 10.1016/j.ssci.2017.10.005
    [20] Li X H, Zhao P, Li L X. Resilience and reliability analysis of P2P network systems. Operations Research Letters, 2010, 38(1): 20-26 doi: 10.1016/j.orl.2009.09.006
    [21] Tran H T, Balchanos M, Domerçant J C, Mavris D N. A framework for the quantitative assessment of performance-based system resilience. Reliability Engineering & System Safety, 2017, 158: 73-84
    [22] 李瑞莹, 杜时佳, 康锐. 复杂系统弹性建模与评估. 北京: 化学工业出版社, 2019.

    Li Rui-Ying, Du Shi-Jia, Kang Rui. Modeling and Evaluation of Complex System Resilience. Beijing: Chemical Industry Press, 2019.
    [23] Jin C, Li R Y, Kang R. Analysis and comparison of three measures for system resilience. Risk, Reliability and Safety: Innovating Theory and Practice. London: CRC Press, 2016. 2145−2151
    [24] Bruneau M, Chang S E, Eguchi R T, Lee G C, O'Rourke T D, Reinhorn A M, et al. A framework to quantitatively assess and enhance the seismic resilience of communities. Earthquake Spectra, 2003, 19(4): 733-752 doi: 10.1193/1.1623497
    [25] Cimellaro G P, Reinhorn A M, Bruneau M. Seismic resilience of a hospital system. Structure and Infrastructure Engineering, 2010, 6(1-2): 127-144 doi: 10.1080/15732470802663847
    [26] 黄浪, 吴超, 王秉. 系统安全韧性的塑造与评估建模. 中国安全生产科学技术, 2016, 12(12): 15-21

    Huang Lang, Wu Chao, Wang Bing. Modeling on shaping and assessment of system safety resilience. Journal of Safety Science and Technology, 2016, 12(12): 15-21
    [27] Reed D A, Kapur K C, Christie R D. Methodology for assessing the resilience of networked infrastructure. IEEE Systems Journal, 2009, 3(2): 174-180 doi: 10.1109/JSYST.2009.2017396
    [28] Zobel C W. Representing perceived tradeoffs in defining disaster resilience. Decision Support Systems, 2011, 50(2): 394-403 doi: 10.1016/j.dss.2010.10.001
    [29] Zobel C W, Khansa L. Characterizing multi-event disaster resilience. Computers & Operations Research, 2014, 42: 83-94
    [30] Ouyang M, Dueñas-Osorio L, Min X. A three-stage resilience analysis framework for urban infrastructure systems. Structural Safety, 2012, 36-37: 23-31 doi: 10.1016/j.strusafe.2011.12.004
    [31] Ouyang M, Wang Z H. Resilience assessment of interdependent infrastructure systems: With a focus on joint restoration modeling and analysis. Reliability Engineering & System Safety, 2015, 141: 74-82
    [32] Li Z L, Jin C, Hu P, Wang C. Resilience-based transportation network recovery strategy during emergency recovery phase under uncertainty. Reliability Engineering & System Safety, 2019, 188: 503-514
    [33] Chang S E, Shinozuka M. Measuring improvements in the disaster resilience of communities. Earthquake Spectra, 2004, 20(3): 739-755 doi: 10.1193/1.1775796
    [34] Li Y, Lence B J. Estimating resilience for water resources systems. Water Resources Research, 2007, 43(7): Article No. W07422
    [35] 石建伟, 刘俊先, 姜志平, 权冀川. 基于超网络的军事体系韧性评估. 指挥与控制学报, 2017, 3(3): 213-217

    Shi Jian-Wei, Liu Jun-Xian, Jiang Zhi-Ping, Quan Ji-Chuan. Evaluating military system of systems resilience using super networks. Journal of Command and Control, 2017, 3(3): 213-217
    [36] 崔琼, 李建华, 冉淏丹, 南明莉. 基于任务能力的指挥信息系统超网络弹性度量. 指挥与控制学报, 2017, 3(2): 137-143

    Cui Qiong, Li Jian-Hua, Ran Hao-Dan, Nan Ming-Li. Resilience measurement of command information system super-network based on mission capability. Journal of Command and Control, 2017, 3(2): 137-143
    [37] 荣明, 胡晓峰, 杨镜宇. 基于试验床的作战体系弹性评估研究. 系统仿真学报, 2018, 30(12): 4711-4717

    Rong Ming, Hu Xiao-Feng, Yang Jing-Yu. Research on assessment of operation system's resilience based on test bed. Journal of System Simulation, 2018, 30(12): 4711-4717
    [38] Zhang C, Xu X, Dui H. Resilience Measure of Network Systems by Node and Edge Indicators. Reliability Engineering & System Safety, 2020, 202: Article No. 107035
    [39] 康建设, 宋文渊, 白永生, 田霞. 装备可靠性工程. 北京: 国防工业出版社, 2019.

    Kang Jian-She, Song Wen-Yuan, Bai Yong-Sheng, Tian Xia. Equipment Reliability Engineering. Beijing: National Defense Industry Press, 2019.
    [40] Whitson J C, Ramirez-Marquez J E. Resiliency as a component importance measure in network reliability. Reliability Engineering & System Safety, 2009, 94(10): 1685-1693
    [41] 潘星, 张国忠, 张跃东, 康锐. 工程弹性系统与系统弹性理论研究综述. 系统工程与电子技术, 2019, 41(9): 2006-2015 doi: 10.3969/j.issn.1001-506X.2019.09.13

    Pan Xing, Zhang Guo-Zhong, Zhang Yue-Dong, Kang Rui. Review of engineered resilient systems and system resilience theory. Systems Engineering and Electronics, 2019, 41(9): 2006-2015 doi: 10.3969/j.issn.1001-506X.2019.09.13
  • 加载中
图(12) / 表(3)
计量
  • 文章访问数:  1094
  • HTML全文浏览量:  287
  • PDF下载量:  151
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-08-13
  • 录用日期:  2021-01-15
  • 网络出版日期:  2021-02-05
  • 刊出日期:  2023-07-20

目录

    /

    返回文章
    返回