[1]
|
Jadbabaie A, Lin J, Morse A S. Coordination of groups of mobile autonomous agents using nearest neighbor rules. IEEE Transactions on Automatic Control, 2003, 48(6): 988−1001 doi: 10.1109/TAC.2003.812781
|
[2]
|
Forti M, Nistri P, Papini D. Global exponential stability and global convergence in finite time of delayed neural networks with infinite gain. IEEE Transactions on Neural Networks, 2005, 16(6): 1449−1463 doi: 10.1109/TNN.2005.852862
|
[3]
|
Yu W W, Chen G R, Cao M. Some necessary and sufficient conditions for second-order consensus in multi-agent dynamical systems. Automatica, 2010, 46(6): 1089−1095 doi: 10.1016/j.automatica.2010.03.006
|
[4]
|
陈世明, 化俞新, 祝振敏, 赖强. 邻域交互结构优化的多智能体快速蜂拥控制算法. 自动化学报, 2015, 41(12): 2092−2099Chen Shi-Ming, Hua Yu-Xin, Zhu Zhen-Min, Lai Qiang. Fast Flocking Algorithm for Multi-agent Systems by Opti-mizing Local Interactive Topology. Acta Automatica Sinica, 2015, 41(12): 2092−2099
|
[5]
|
Kim J M, Park J B, Choi Y H. Leaderless and leader-following consensus for heterogeneous multi-agent systems with random link failures. Iet Control Theory and Applications, 2014, 8(1): 51−60 doi: 10.1049/iet-cta.2012.0855
|
[6]
|
Ma Q, Wang Z, Miao G Y. Second-order group consensus for multi-agent systems via pinning leader-following approach. Journal of The Franklin Institute-engineering and Applied Mathematics, 2014, 351(3): 1288−1300 doi: 10.1016/j.jfranklin.2013.11.002
|
[7]
|
Roy S. Scaled consensus. Automatica, 2015: 259−262
|
[8]
|
Zhang Z, Chen S M, Su H S. Scaled Consensus of Second-Order Nonlinear Multiagent Systems With Time-Varying Delays via Aperiodically Intermittent Control. IEEE Transactions on Cybernetics, 2020, 50(8): 3503−3516 doi: 10.1109/TCYB.2018.2883793
|
[9]
|
Chen S M, Zhang Z, Zheng Y S. H∞ Scaled Consensus for MASs With Mixed Time Delays and Disturbances via Observer-Based Output Feedback[J]. IEEE Transactions on Cybernetics, to be publication.
|
[10]
|
Wang Z H, Xu J J, Zhang H S. Consensusability of multi-agent systems with time-varying communication delay. Systems & Control Letters, 2014: 37−42
|
[11]
|
Chen Y, Shi Y. Consensus for Linear Multiagent Systems With Time-Varying Delays: A Frequency Domain Perspective. IEEE Transactions on Systems, Man, and Cybernetics, 2017, 47(8): 2143−2150
|
[12]
|
Qiu Z R, Xie L H, Hong Y G. Quantized Leaderless and Leader-Following Consensus of High-Order Multi-Agent Systems With Limited Data Rate. IEEE Transactions on Automatic Control, 2016, 61(9): 2432−2447 doi: 10.1109/TAC.2015.2495579
|
[13]
|
Dong X W, Xi J X, Shi Z Y, Zhong Y S. Practical consensus for high-order linear time-invariant swarm systems with interaction uncertainties, time-varying delays ang external disturbances. International Journal of systems Science, 2013, 44(10): 1843−1856 doi: 10.1080/00207721.2012.670296
|
[14]
|
Bernuau E, Moulay E, Coirault P, Lsfoula F. Practical Consensus of Homogeneous Sampled-Data Multiagent Systems. IEEE Transactions on Automatic Control, 2019, 64(11): 4691−4697 doi: 10.1109/TAC.2019.2904442
|
[15]
|
Ning B, Han Q L, Zuo Z Y. Practical fixed-time consensus for integrator-type multi-agent systems: A time base generator approach. Automatica, 2019, 105(105): 406−414
|
[16]
|
Panteley E, Loria A, Elati A. Practical dynamic consensus of Stuart–Landau oscillators over heterogeneous networks. International Journal of Control, 2020, 93(2): 261−273 doi: 10.1080/00207179.2018.1551618
|
[17]
|
张文, 马忠军, 王毅. 带未知耦合权重的领导-跟随多智能体系统的实用一致性. 自动化学报, 2018, 44(12): 2300−2304Zhang Wen, Ma Zhong-Jun, Wang Yi. Practical Consensus of Leader-following Multi-agent System with Unknown Coupling Weights. Acta Automatica Sinica, 2018, 44(12): 2300−2304
|
[18]
|
Altafini C. Consensus Problems on Networks With Antagonistic Interactions. IEEE Transactions on Automatic Control, 2013, 58(4): 935−946 doi: 10.1109/TAC.2012.2224251
|
[19]
|
Zhang H, Chen J. Bipartite consensus of multi-agent systems over signed graphs: State feedback and output feedback control approaches. International Journal of Robust and Nonlinear Control, 2017, 27(1): 3−14 doi: 10.1002/rnc.3552
|
[20]
|
Jiang Y, Zhang H W, Chen J. Sign-Consensus of Linear Multi-Agent Systems Over Signed Directed Graphs. IEEE Transactions on Industrial Electronics, 2017, 64(6): 5075−5083 doi: 10.1109/TIE.2016.2642878
|
[21]
|
Meng D Y, Meng Z Y, Hong Y G. Uniform convergence for signed networks under directed switching topologies. Automatica, 2018, 90: 8−15 doi: 10.1016/j.automatica.2017.12.028
|
[22]
|
Pan L, Shao H, Mesbahi M, Li D. Bipartite consensus on matrix-valued weighted networks. IEEE Transactions on Circuits and Systems II: Express Briefs, 2018, 66(8): 1441−1445
|
[23]
|
Su H S, Chen J H, Yang Y C. The Bipartite Consensus for Multi-Agent Systems with Matrix-Weight-Based Signed Network. IEEE Transactions on Circuits and Systems II: Express Briefs, 2019, 67(10): 2019−2023
|
[24]
|
翟世东, 刘佩, 高辉. 具有对抗关系和时变拓扑的耦合离散系统有界双向同步. 自动化学报, 2020Zhai Shi-Dong, Liu Pei, Gao Hui. Bounded bipartite synchronization for coupled discrete systems under antagonistic. Acta Automatica Sinica, 2020
|
[25]
|
Akshay K, Tamer B, R. Srikant. Quantized consensus. Automatica, 2007, 43: 1192−1203 doi: 10.1016/j.automatica.2007.01.002
|
[26]
|
Dimarogonasa D V, Johansson K H. Stability analysis for multi-agent systems using the incidence martrix: Quantized communication and formation control. Automatica, 2010, 46(4): 695−700 doi: 10.1016/j.automatica.2010.01.012
|
[27]
|
Ceragioli F, Claudio D P, Paolo F. Discontinuities and hysteresis in quantized average consensus. Automatica, 2011, 47(9): 1916−1928 doi: 10.1016/j.automatica.2011.06.020
|
[28]
|
Zhu Y R, Li S L, Ma J Y, Zheng Y S. Bipartite Consensus in Networks of Agents With Antagonistic Interactions and Quantization. IEEE Transactions on circuits and systems-express briefs, 2018, 65(12): 2012−2018 doi: 10.1109/TCSII.2018.2811803
|
[29]
|
Wu J, Deng Q, Han T, Yan H C. Distributed bipartite tracking consensus of nonlinear multi-agent systems with quantized communication. Neurocomputing, 2020, 395: 78−85 doi: 10.1016/j.neucom.2020.02.017
|