2.793

2018影响因子

(CJCR)

  • 中文核心
  • EI
  • 中国科技核心
  • Scopus
  • CSCD
  • 英国科学文摘

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

软体机械臂水下自适应鲁棒视觉伺服

徐璠 王贺升

徐璠, 王贺升. 软体机械臂水下自适应鲁棒视觉伺服. 自动化学报, 2020, 46(x): 1−10 doi: 10.16383/j.aas.c200457
引用本文: 徐璠, 王贺升. 软体机械臂水下自适应鲁棒视觉伺服. 自动化学报, 2020, 46(x): 1−10 doi: 10.16383/j.aas.c200457
Xu Fan, Wang He-Sheng. Adaptive robust visual servoing control of a soft manipulator in underwater environment. Acta Automatica Sinica, 2020, 46(x): 1−10 doi: 10.16383/j.aas.c200457
Citation: Xu Fan, Wang He-Sheng. Adaptive robust visual servoing control of a soft manipulator in underwater environment. Acta Automatica Sinica, 2020, 46(x): 1−10 doi: 10.16383/j.aas.c200457

软体机械臂水下自适应鲁棒视觉伺服

doi: 10.16383/j.aas.c200457
基金项目: 国家自然科学基金(62073222, 61722309)资助
详细信息
    作者简介:

    徐璠:上海交通大学自动化系博士研究生. 主要研究方向为软体机器人, 视觉伺服. E-mail: xufan_1993@sjtu.edu.cn

    王贺升:上海交通大学自动化系教授.主要研究方向为视觉伺服, 服务机器人, 机器人控制, 自动驾驶.本文通信作者. E-mail: wanghesheng@sjtu.edu.cn

Adaptive Robust Visual Servoing Control of A Soft Manipulator in Underwater Environment

Funds: Supported by National Natural Science Foundation of P. R. China (62073222, 61722309)
  • 摘要: 水下仿生软体机器人在水底环境勘测, 水下生物观测等方面具有极高的应用价值. 本文为进一步提升仿章鱼臂软体机器人在特殊水下环境中控制效果, 提出一种自适应鲁棒视觉伺服控制方法, 实现其在干扰无标定环境中的高精度镇定控制. 本文基于水底动力学模型, 设计保证动力学稳定的控制器; 针对柔性材料离线标定过程繁琐成本高, 提出料参数自适应估计算法; 针对水下特殊工作条件, 设计自适应鲁棒视觉伺服控制器, 实现折射效应的在线补偿, 并通过自适应未知环境干扰上界, 避免先验环境信息的求解. 所提算法在软体机器人样机中验证其镇定控制性能, 为仿生软体机器人的实际应用提供理论基础.
  • 图  1  (a) 仿章鱼臂软体机械臂; (b) 离散化虚拟关节机构示意图

    Fig.  1  (a) Octopus tentacle-inspired soft manipulator; (b) Sketch of discretized virtual section

    图  2  水下相机模型

    Fig.  2  Underwater camera model

    图  3  控制器简图

    Fig.  3  Block diagram of the controller

    图  4  实验设置

    Fig.  4  Experiment setup

    图  5  图像误差收敛过程曲线

    Fig.  5  Converging process of image error.

    图  6  图像轨迹曲线

    Fig.  6  Image trajectory curve

    图  7  3D轨迹曲线

    Fig.  7  3D trajectory curve

    图  8  ${\hat \chi _D}$中未知参数$\hat E$和未知干扰上界$\hat \theta $的收敛过程曲线

    Fig.  8  Converging process of estimated parameters in ${\hat \chi _D}$ and of $\hat \theta $.

    图  9  ${\hat \chi _C}$中未知参数的收敛过程曲线

    Fig.  9  Converging process of estimated parameters in ${\hat \chi _C}$

  • [1] Rus D, Tolley MT. Design, fabrication and control of soft robots. Nature, 2015, 521(7553): 467−475
    [2] Gong Z, Fang X, Chen X, Cheng J, Xie Z, Liu J, et al. A soft manipulator for efficient delicate grasping in shallow water: Modeling, control, and real-world experiments. The International Journal of Robotics Research, to be published.
    [3] Till J, Aloi V, Rucker C. Real-time dynamics of soft and continuum robots based on Cosserat rod models. The International Journal of Robotics Research, 2019, 38(6): 723−746
    [4] Qiao H, Li QS, Li GQ. Vibratory characteristics of flexural non-uniform Euler–Bernoulli beams carrying an arbitrary number of spring–mass systems. International Journal of Mechanical Sciences, 2002, 44(4): 725−743
    [5] Jones BA, Walker ID. Kinematics for multisection continuum robots. IEEE Transactions on Robotics, 2006, 22(1): 43−55
    [6] Allen TF, Rupert L, Duggan TR, Hein G, Albert K. Closed-Form Non-Singular Constant-Curvature Continuum Manipulator Kinematics. In: Proceedings of 2020 3rd IEEE International Conference on Soft Robotics (RoboSoft). New Haven, CT, USA, IEEE, 2020. p. 410−416.
    [7] Grazioso S, Di Gironimo G, Siciliano B. A Geometrically Exact Model for Soft Continuum Robots: The Finite Element Deformation Space Formulation. Soft Robotics, 2018, 6(6): 790−811
    [8] Thuruthel TG, Falotico E, Renda F, Laschi C. Model-Based Reinforcement Learning for Closed-Loop Dynamic Control of Soft Robotic Manipulators. IEEE Transactions on Robotics, 2019, 35(1): 124−134
    [9] Xu F, Wang H, Au KWS, Chen W, Miao Y. Underwater Dynamic Modeling for a Cable-Driven Soft Robot Arm. IEEE/ASME Transactions on Mechatronics, 2018, 23(6): 2726−2738
    [10] Han L, Wang H, Liu Z, Chen W, Zhang X. Vision-based Cutting Control of Deformable Objects with Surface Tracking. IEEE/ASME Transactions on Mechatronics, doi: 10.1109/TMECH.2020.3029114, to be published.
    [11] Qiao H, Li Y, Tang T, Wang P. Introducing Memory and Association Mechanism Into a Biologically Inspired Visual Model. IEEE Trans Cybern, 2014, 44(9): 1485−1496
    [12] 徐德. 单目视觉伺服研究综述. 自动化学报, 2018, 44(10): 1729−1746

    Xu De. A tutorial for monocular visual servoing. Acta Automatica Sinica,, 2018, 44(10): 1729−1746
    [13] Xu F, Wang H, Liu Z, Chen W. Adaptive visual servoing for an underwater soft robot considering refraction effects. IEEE Transactions on Industrial Electronics, 2020, 67(12): 10575−10586
    [14] Gu H, Wang H, Xu F, Liu Z, Chen W. Active fault detection of soft manipulator in visual servoing. IEEE Transactions on Industrial Electronics, doi: 10.1109/TIE.2020.3028813, to be published.
    [15] Liu YH, Wang H, Wang C, Lam KK. Uncalibrated visual servoing of robots using a depth-independent interaction matrix. IEEE Transactions on Robotics, 2006, 22(4): 804−817
    [16] Bonkovic M, Hace A, Jezernik K. Population-based uncalibrated visual servoing. IEEE/ASME Transactions on Mechatronics, 2008, 13(3): 393−397
    [17] Li M, Kang R, Branson DT, Dai JS. Model-free control for continuum robots based on an adaptive kalman filter. IEEE/ASME Transactions on Mechatronics, 2018, 23(1): 286−297
    [18] Meline A, Triboulet J, Jouvencel B. A camcorder for 3D underwater reconstruction of archeological objects. In: Proceedings of in OCEANS 2010 MTS/IEEE Seattle, USA: IEEE, 2010, pp. 1−9.
    [19] Botelho SSdC, Drews P, Oliveira GL, Figueiredo MdS. Visual odometry and mapping for Underwater Autonomous Vehicles. In: Proceedings of 2009 6th Latin American Robotics Symposium, Valparaiso, Chile: IEEE, 2009. p. 1−6.
    [20] Tsai R. A versatile camera calibration technique for high-accuracy 3D machine vision metrology using off-the-shelf TV cameras and lenses. IEEE Journal on Robotics and Automation, 1987, 3(4): 323−344
    [21] Traffelet L, Eppenberger T, Millane A, Schneider T, Siegwart R. Target-based calibration of underwater camera housing parameters. In: Proceedings of 2016 IEEE International Symposium on Safety, Security, and Rescue Robotics (SSRR), Lausanne, Switzerland: IEEE, 2016. p. 201−206.
    [22] Shuang Z, Xuejun L, Tao L. Camera distortion calibration method based on nonspecific planar target. In: Proceedings of 2016 IEEE International Conference on Signal and Image Processing (ICSIP), Beijing, China: IEEE, 2016. p. 452−457.
    [23] He W, Ge SS, Zhang S. Adaptive boundary control of a flexible marine installation system. Automatica, 2011, 47(12): 2728−2734
    [24] Forsyth DA, Ponce J. Computer Vision: A Modern Approach. Pearson: London, England, UK, 2002.
  • 加载中
计量
  • 文章访问数:  59
  • HTML全文浏览量:  16
  • 被引次数: 0
出版历程
  • 网络出版日期:  2020-12-21

目录

    /

    返回文章
    返回