2.793

2018影响因子

(CJCR)

  • 中文核心
  • EI
  • 中国科技核心
  • Scopus
  • CSCD
  • 英国科学文摘

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

鱼集群游动的节能机理研究综述

张天栋 王睿 程龙 王宇 王硕

张天栋, 王睿, 程龙, 王宇, 王硕. 鱼集群游动的节能机理研究综述. 自动化学报, 2020, 45(x): 1−13 doi: 10.16383/j.aas.c200293
引用本文: 张天栋, 王睿, 程龙, 王宇, 王硕. 鱼集群游动的节能机理研究综述. 自动化学报, 2020, 45(x): 1−13 doi: 10.16383/j.aas.c200293
Zhang Tian-Dong, Wang Rui, Cheng Long, Wang Yu, Wang Shou. Research on energy-saving mechanism of fish schooling: a review. Acta Automatica Sinica, 2020, 45(x): 1−13 doi: 10.16383/j.aas.c200293
Citation: Zhang Tian-Dong, Wang Rui, Cheng Long, Wang Yu, Wang Shou. Research on energy-saving mechanism of fish schooling: a review. Acta Automatica Sinica, 2020, 45(x): 1−13 doi: 10.16383/j.aas.c200293

鱼集群游动的节能机理研究综述

doi: 10.16383/j.aas.c200293
基金项目: 国家自然科学基金项目(U1713222, 62073316, U1806204, U1913209, 62025307), 北京市自然科学基金(JQ19020, L182060), 中国科学院青年创新促进会项目(2020137)资助
详细信息
    作者简介:

    张天栋:中国科学院自动化研究所博士研究生. 2018年获得北京邮电大学学士学位. 主要研究方向为智能机器人, 水下仿生机器人. E-mail: zhangtiandong2018@ia.ac.cn

    王睿:中国科学院自动化研究所复杂系统管理与控制国家重点实验室助理研究员. 主要研究方向为智能控制、机器人学、水下仿生机器人. 本文通信作者. E-mail: rwang5212@ia.ac.cn

    程龙:中国科学院自动化研究所复杂系统管理与控制国家重点实验室研究员. 主要研究方向为机器人与智能控制. E-mail: long.cheng@ia.ac.cn

    王宇:中国科学院自动化研究所复杂系统管理与控制国家重点实验室副研究员. 主要研究方向为智能控制、机器人学、水下仿生机器人. E-mail: yu.wang@ia.ac.cn

    王硕:中国科学院自动化研究所复杂系统管理与控制国家重点实验室和中国科学院脑科学与智能技术卓越创新中心研究员. 主要研究方向为智能机器人, 仿生机器人和多机器人系统. E-mail: shuo.wang@ia.ac.cn

Research on Energy-Saving Mechanism of Fish Schooling: A Review

Funds: National Natural Science Foundation of P. R. China (U1713222, 62073316, U1806204, U1913209, 62025307), Beijing Municipal Natural Science Foundation (JQ19020, L182060), and Youth Innovation Promotion Association of CAS (2020137)
  • 摘要: 集群是鱼类生物中一种常见的现象, 特定编队的集群运动可以显著提高鱼群的游动效率. 鱼集群游动节能机理的研究为机器人集群编队设计和控制提供启发与帮助, 得到了研究人员的广泛关注. 本文介绍了鱼集群游动节能机理研究的主要方法及最新的研究成果, 将研究方法分为鱼群观察分析法、计算流体力学仿真法和实验装置研究法, 并基于此对近些年的研究成果进行了综述和分析, 最后列举了鱼集群游动节能机理研究的主要问题与未来发展方向.
  • 图  1  两种节能机理假说示意图. (a)涡流效应, (b)槽道效应. (修改自文献[14])

    Fig.  1  The schematic of two hypotheses of energy-saving mechanism. (a) Vortex hypothesis, (b) channeling effect. (Revised from reference [14])

    图  2  鱼群菱形队形及涡街分布示意图, 虚线表示菱形队形的形式. (修改自文献[1])

    Fig.  2  The schematic of fish schooling and near vortex streets. The dotted line shows a "diamond" pattern. (Revised from reference [1])

    图  3  鳟鱼在(a)自由流场中和(b)圆柱尾流中游动时其侧边肌肉活动性的差异, 圆圈的颜色越深表示肌肉活力越大, 能耗越高. (修改自文献[22])

    Fig.  3  The difference of red muscle activity between (a) trout swimming in free stream flow versus (b) trout holding station behind a cylinder. The color of the circle indicates muscle vitality. (Revised from reference [22])

    图  4  鳗鱼集群游动照片. (修改自文献[34])

    Fig.  4  The photo of anguilla schooling. (Revised from reference [34])

    图  5  鱼集群中, 焦点鱼(红点)相对于其最近邻居的位置. (修改自文献[35])

    Fig.  5  Positions of the focal fish (red dot) relative to its closest neighbor in fish schooling. (Revised from reference [35])

    图  6  两种流速下鱼集群游动示意图. (a)−(d)低速, (e)−(h)高速. (修改自文献[37])

    Fig.  6  The schematic of the fish schooling at two flow rates. (a)−(d) Low speed, (e)−(h) high speed. (Revised from reference [37])

    图  7  柔性板运动实验示意图. (a)单个D形柱, (b)两个D形柱. (修改自文献[52])

    Fig.  7  The schematic of flexible foil movement experiment. (a) Single D-cylinder, (b) double D-cylinder. (Revised from reference [52])

    图  8  平行排列的波动板运动示意图. (a)同相位同步运动, (b)反相位同步运动. (修改自文献[65])

    Fig.  8  The schematic of traveling wavy foils movement in a side-by-side arrangement. (a) In-phase synchronous movement, (b) anti-phase synchronous movement. (Revised from reference [65])

    图  9  四种集群编队结构的示意图. (a)串列, (b)方阵, (c)菱形和(d)矩形, 其中相邻点横向间距为dy, 纵向间距为dx. (修改自文献[67])

    Fig.  9  The four kinds of formation configurations. (a) Tandem, (b) phalanx, (c) diamond and (d) rectangle. Lateral spacing between neighbors is given by dy and longitudinal spacing by dx. (Revised from reference [67])

    图  10  三种前后排列的双鱼编队仿真示意图. (a)远距离前后排列, (b)近距离前后排列和(c)并行排列. (修改自文献[68])

    Fig.  10  The simulation schematic of the double-fish formation. (a) Long range fore-and-aft arrangement, (b) short range fore-and-aft arrangement and (c) parallel arrangement. (Revised from reference [68])

    图  11  由两条、三条和四条鱼组成的队列及涡度结构示意图. (a)两鱼并排(反相位); (b)两鱼并排(同相); (c)两鱼串列(紧凑); (d)两鱼串列(松散); (e)两鱼交错(紧凑); (f)两鱼交错(松散); (g)三鱼并排(反相位); (h)三鱼并排(同相); (i)三鱼梯队; (j)三鱼交错(I型); (k)三条鱼交错(II型); (l)四条鱼矩形(紧凑, 反相位); (m)四条鱼矩形(松散, 反相位); (n)四条鱼菱形. (修改自文献[72])

    Fig.  11  The swarm configurations and flow structures of two, three and four fish. (a) Two fish side-by-side (anti-phase); (b) two fish side-by-side (in-phase); (c) two fish in-line (compact); (d) two fish in-line (loose); (e) two fish staggered (compact); (f) two fish staggered (loose); (g) three fish side-by-side (anti-phase); (h) three fish side-by-side (in-phase); (i) three fish echelon; (j) three fish staggered (type I); (k) three fish staggered (type II); (l) four fish rectangular (compact, anti-phase); (m) four fish rectangular (loose, anti-phase); (n) four fish diamond. (Revised from reference [72])

    图  12  仿生柔性水翼实验装置. (修改自文献[81])

    Fig.  12  The experimental setup with bionic flexible hydrofoil. (Revised from reference [81])

    图  13  旋转轨道上扑翼阵推进实验装置.(修改自文献[83])

    Fig.  13  Experiment setup of flapping wings moving in rotational orbits. (Revised from reference [83])

    图  14  并排链接的两条机器鱼. (修改自文献[85])

    Fig.  14  Side by side linked robotic fishes. (Revised from reference [85])

    表  1  鱼群观察分析法的发展历程

    Table  1  The development of the method of observation and analysis for fish schooling

    作者研究方法主要结论(涡流效应)作者研究方法主要结论(槽道效应)
    Brede(1965)
    等人[18]
    观察鱼群游动过程维持漩涡的完整性对鱼群游动的效率很重要Burger-hout(2013)
    等人[31-34]
    观察7条欧洲鳗鲡在水槽中集群游动过程, 并测量鳗鱼尾拍频率鳗鱼集群游动可减少30%功耗. 鳗鱼倾向于以彼此平行的同步方式游动, 利用个体之间的侧向力达到节能目的
    Weihs(1973)
    等人[1, 19]
    观察鱼群, 构建二维鱼群编队水动力模型菱形为最优队形, 鱼群有效利用漩涡最多可节省50%的能量
    Herskin(1998)
    等人[10]
    测量9条海鲈鱼集群游动时的尾拍频率后方鲈鱼的尾拍频率比在前方鲈鱼最多降低14%, 耗氧率降低23%Marras(2015)
    等人[35]
    利用相机与DPIV观察灰鲻鱼集群游动及水流情况, 测量标记鱼在不同位置的尾拍频率与幅值鱼群任何位置都可以节能, 耗氧率最多降低19.4%. 不只是尾部涡流, 鱼体前端周围的流体动力学也有助于提高邻近鱼游动效率
    Svendsen(2003)
    等人[21]
    测量8条拟鲤组成菱形编队游动时的尾拍频率后方鱼的尾拍频率最多可比在前方低11.9%, 菱形编队有利于节能
    Liao(2003)
    等人[22-25]
    观察在圆柱挡板后游动的鳟鱼, DPIV观察涡流分布, 生物肌电信号测量仪测量鳟鱼的肌电信号鳟鱼通过感知并利用涡流来保持卡门步态, 减少了肌肉活动. 证明鳟鱼会自动改变身体运动来从漩涡中获取能量Ashraf(2017)
    等人[36-37]
    利用立体视频记录仪跟踪红鼻四头鱼集群中每条鱼的3D位置及
    尾鳍摆动
    鱼群快速游动时, 倾向于“矩形”或“并列”编队. 鱼间的水动力相互作用可以提高游动效率, 证明槽道效应在鱼群节能过程中发挥重要作用
    下载: 导出CSV

    表  2  CFD仿真法的发展历程

    Table  2  The development of the method of CFD simulation for fish schooling

    作者研究方法主要结论(涡流效应)作者研究方法主要结论(槽道效应)
    Kelly(2005),
    Deng(2006)
    等人[44-47]
    从菱形鱼群中提
    取出三条鱼作为
    基本单元, 对其游
    动进行数值模拟
    后方鱼可捕获前方鱼制造的尾涡, 并从脱落的反卡门涡街中受益达到节能目的王亮
    (2005) [64]
    数值模拟多条二维
    仿真鱼在粘性流体
    中编队游动
    小鱼跟随大鱼多利用侧向漩涡来提高推进效率. 体形相差不大的鱼多利用尾涡来提高的推进效率
    Pan(2010),
    Xiao(2011),
    Chao(2018)
    等人[48-53]
    数值模拟D形圆柱后柔性板NACA0012
    的被动运动
    上游圆柱的存在增强了其尾流中的反卡门涡街, 后方柔性板的推力系数可提高4倍Daghoo-ghi(2015)
    等人[14]
    数值模拟多条三维
    仿真鱼以矩形编队
    自主同步游动
    同等能量消耗下集群游动的速度比单独游动快20%. 鱼间距离减小会提高游动方向的流体速度, 单靠流体动力相互作用足以产生高效的集群游动
    Khalid(2016),
    Tian(2016),
    Maer-tens(2017)
    等人[54-57]
    分别数值模拟两条
    二维与三维的仿真
    鱼在编队中的游动
    串联和交错编队均能提高游动效率, 后方鱼效率最高可提高30%. 通过利用迎面漩涡, 后方鱼可在能与前方鱼尾迹相互作用的位置受益Hemel-rijk(2015),
    Li (2019)
    等人[66-67]
    利用数值模拟研究
    了鱼群四种不同编
    队(串列、方阵、菱
    形和矩形)游动时的
    Froude效率
    鱼集群游动比单独游动效率高, 但菱形队列并不是最优. 尾流和横向压力共同影响游动效率, 尾流主要影响推力, 横向压力主要影响功率损失
    Novati(2017),
    Verma(2018)
    等人[62-63]
    分别数值模拟两条
    二维与三维自主仿
    真鱼编队游动, 先导
    鱼步态固定, 尾随鱼
    利用深度强化学习来调整步态
    尾随鱼的能量消耗减少30%, 游动效率增加20%. 鱼类可以通过将身体置于前方鱼身后的适当位置并拦截其脱落的涡流来提高自身推进效率Dai(2018)
    等人[72]
    分别数值模拟了2、3和4条仿真鱼组成
    的编队自主游动, 并
    用运输成本来量化
    稳定编队的游动效率
    与单独游动相比, 集群游动COT最多减少16%, 但相较于其他编队, 菱形编队并没有表现出任何节能优势, 说明被动水动力相互作用是节能的主要原因
    下载: 导出CSV

    表  3  实验装置研究法的发展历程

    Table  3  The development of the method of experimental setup research for fish schooling

    作者研究方法主要结论
    Dewey(2014), Boschit-sch(2014)
    等人[79-81]
    利用高速相机及DPIV观察分析两个仿生柔性水翼在并列与串列结构中的摆动并联结构中同相摆动尾流形成涡对, 诱导动量喷流来提高水翼推进效率; 串联结构中尾流形成相干模式, 后方水翼的效率最多可提高50%
    Becker(2015)等人[83]扑翼阵自主推进实验仅通过流体动力学相互作用足以产生互相耦合的集群运动, 来提高推进效率
    裴正楷(2016)等人[85]研究两条仿鲹科机器鱼并排运动通过流体传导, 并排游动的机器鱼在特定相位差时可以相互促进, 提高运动效率
    下载: 导出CSV

    表  4  三类研究方法特点对比

    Table  4  Comparison of three kinds of research methods

    对比项目优点缺点
    鱼群观察分析法反映真实鱼群游动情况编队不易保持, 不
    易精确定量分析
    计算流体力学
    仿真法
    可精确定量分析,
    模拟各种编队
    不能反映真实的
    水动力学关系
    实验装置研究法可反映真实水动力
    学关系, 易保持队
    形, 可定量分析
    无法完全模拟鱼游动过
    程, 对实验装置和
    平台要求较高
    下载: 导出CSV
  • [1] Weihs D. Hydromechanics of fish schooling. Nature, 1973, 241(5387): 290−291
    [2] Shaw E. Schooling fishes. American Scientist, 1978, 66(2): 166−175
    [3] Pitcher T, Parrish J. Functions of shoaling behavior in teleosts. Behavior of Teleost Fishes, 1993, 2: 363−439
    [4] Godin J G J, Morgan M J. Predator avoidance and school size in a cyprinodontid fish, the banded killifish (fundulus diaphanus lesueur). Behavioral Ecology and Sociobiology, 1985, 16: 105−110
    [5] Magurran A E, Higham A. Information transfer across fish shoals under predator threat. Ethology, 1988, 78(2): 153−158
    [6] Pitcher T J, MagurranI A E, Winfield I J. Fish in larger shoals find food faster. Behavioral Ecology and Sociobiology, 1982, 10: 149−151
    [7] Wolf N G. Schooling tendency and foraging benefit in the ocean surgeonfish. Behavioral Ecology and Sociobiology, 1987, 21: 59−63
    [8] Ranta E, Lindstrom K. Assortative schooling in three-spined sticklebacks? Annales Zoologici Fennici, 1990, 27(2): 67−75
    [9] Fish F. Energetics of swimming and flying in formation. Comments on Theoretical Biology, 1999, 5: 283−304
    [10] Herskin J, Steffensen J F. Energy savings in sea bass swimming in a school: measurements of tail beat frequency and oxygen consumption at different swimming speeds. Journal of Fish Biology, 1998, 53(2): 366−376
    [11] Johansen J L, Vaknin R, Steffensen J F, Domenici P. Kinematics and energetic benefits of schooling in the labriform fish, striped surfperch embiotoca lateralis. Marine Ecology Progress Series, 2010, 420: 221−229
    [12] Killen S, Marras S, Steffensen J, McKenzie D. Aerobic capacity influences the spatial position of individuals within fish schools. Proceedings of the Royal Society B: Biological Sciences, 2011, 279: 357−364
    [13] Ross R M, Backman T, Limburg K. Group-size-mediated metabolic rate reduction in American shad. Transactions of the American Fisheries Society, 1992, 121: 385−390
    [14] Daghooghi M, Borazjani I. The hydrodynamic advantages of synchronized swimming in a rectangular pattern. Bioinspiration & Biomimetics, 2015, 10(5): 056018
    [15] Delcourt J, Denoel M, Ylieff M, Poncin P. Video multitracking of fish behaviour: a synthesis and future perspectives. Fish and Fisheries, 2013, 14(2): 186−204
    [16] Lighthill, M. Large-amplitude elongated-body theory of fish locomotion. Proceedings of the Royal Society of London. Series B, Biological Sciences, 1971, 179(1055): 125−138
    [17] Wen Li, Wang Tian-Miao, Wu Guan-Hao, Liang Jian-Hong. Quantitative thrust efficiency of a self-propulsive robotic fish: experimental method and hydrodynamic investigation. IEEE/ASME Transactions on Mechatronics, 2013, 18(3): 1027−1038
    [18] Breder C M. Vortices and fish schools. Zoologica: Scientific Contributions of the New York Zoological Society, 1965, 50(10): 97−114
    [19] Weihs D. Optimal fish cruising speed. Nature, 1973, 245(5419): 48−50
    [20] Fish F E, Fegely J F, Xanthopoulos C J. Burst-and-coast swimming in schooling fish (notemigonus-crysoleucas) with implications for energy economy. Comparative Biochemistry and Physiology a-Physiology, 1991, 100(3): 633−637
    [21] Svendsen J C, Skov J, Bildsoe M, Steffensen J F. Intra-school positional preference and reduced tail beat frequency in trailing positions in schooling roach under experimental conditions. Journal of Fish Biology, 2003, 62(4): 834−846
    [22] Liao J C, Beal D N, Lauder G V, Triantafyllou M S. Fish exploiting vortices decrease muscle activity. Science, 2003, 302(5650): 1566−1569
    [23] Liao J C, Beal D N, Lauder G V, Triantafyllou M S. The Karman gait: novel body kinematics of rainbow trout swimming in a vortex street. Journal of Experimental Biology, 2003, 206(6): 1059−1073
    [24] Liao J C. Neuromuscular control of trout swimming in a vortex street: implications for energy economy during the Karman gait. Journal of Experimental Biology, 2004, 207(20): 3495−3506
    [25] Liao J C. The role of the lateral line and vision on body kinematics and hydrodynamic preference of rainbow trout in turbulent flow. Journal of Experimental Biology, 2006, 209(20): 4077−4090
    [26] Marras S, Porfiri M. Fish and robots swimming together: attraction towards the robot demands biomimetic locomotion. Journal of the Royal Society Interface, 2012, 9(73): 1856−1868
    [27] Halsey L G, Wright S, Racz A, Metcalfe J D, Killen S S. How does school size affect tail beat frequency in turbulent water? Comparative Biochemistry and Physiology a-Molecular & Integrative Physiology, 2018, 218: 63−69
    [28] Lopez U, Gautrais J, Couzin I, Theraulaz G. From behavioural analyses to models of collective motion in fish schools. Interface Focus, 2012, 2: 693−707
    [29] Liao J C. A review of fish swimming mechanics and behaviour in altered flows. Philosophical Transactions of the Royal Society B-Biological Sciences, 2007, 362(1487): 1973−1993
    [30] Webb P. The effect of solid and porous channel walls on steady swimming of steelhead trout oncorhynchus mykiss. Journal of Experimental Biology, 1993, 178(1): 97−108
    [31] Kern S, Koumoutsakos P. Simulations of optimized anguilliform swimming. Journal of Experimental Biology, 2006, 209(24): 4841−4857
    [32] Tytell E, Lauder G. The hydrodynamics of eel swimming. I. Wake structure. Journal of Experimental Biology, 2004, 207: 1825−1841
    [33] Lauder G, Tytell E. Hydrodynamics of undulatory propulsion. Fish Physiology, 2005, 23: 425−468
    [34] Burgerhout E, Tudorache C, Brittijn S, Palstra A, Dirks R, Thillart G. Schooling reduces energy consumption in swimming male European eels, Anguilla anguilla L. Journal of Experimental Marine Biology and Ecology, 2013, 448: 66−71
    [35] Marras S, Killen S S, Lindström J, McKenzie D J, Steffensen J F, Domenici P. Fish swimming in schools save energy regardless of their spatial position. Behavioral Ecology and Sociobiology, 2015, 69(2): 219−226
    [36] Ashraf I, Godoy-Diana R, Halloy J, Collignon B, Thiria B. Synchronization and collective swimming patterns in fish (Hemigrammus bleheri). Journal of the Royal Society Interface, 2016, 13(123): 20160734
    [37] Ashraf I, Bradshaw H, Ha T T, Halloy J, Godoy-Diana R, Thiria B. Simple phalanx pattern leads to energy saving in cohesive fish schooling. Proceedings of the National Academy of Sciences, 2017, 114(36): 9599−9604
    [38] Peskin C S. Flow patterns around heart valves: A numerical method. Journal of Computational Physics, 1972, 10(2): 252−271
    [39] Triantafyllou M, Triantafyllou G. An efficient swimming machine. Scientific American, 1995, 272: 64−70
    [40] Maertens A P, Triantafyllou M S, Yue D K P. Efficiency of fish propulsion. Bioinspiration & Biomimetics, 2015, 10(4): 046013
    [41] Borazjani I, Sotiropoulos F. Numerical investigation of the hydrodynamics of carangiform swimming in the transitional and inertial flow regimes. Journal of Experimental Biology, 2008, 211(10): 1541−1558
    [42] Borazjani I, Sotiropoulos F. Numerical investigation of the hydrodynamics of anguilliform swimming in the transitional and inertial flow regimes. Journal of Experimental Biology, 2009, 212(4): 576−592
    [43] Borazjani I, Sotiropoulos F. On the role of form and kinematics on the hydrodynamics of self-propelled body/caudal fin swimming. Journal of Experimental Biology, 2010, 213(1): 89−107
    [44] Kelly S D, Xiong H, Controlled hydrodynamic interactions in schooling aquatic locomotion. In: Proceeding of 44th IEEE Conference on Decision and Control & European Control Conference, Seville, Spain: IEEE Press, 2005. 3904−3910
    [45] Kelly S D, Pujari P. Propulsive energy harvesting by a fishlike vehicle in a vortex flow: Computational modeling and control. In: Proceeding of 49th IEEE Conference on Decision and Control (CDC), Atlanta, GA: IEEE Press, 2010. 1058−1064
    [46] Deng Jian, Shao Xue-Ming. Hydrodynamics in a diamond-shaped fish school. Journal of Hydrodynamics, 2006, 18(3): 438−442
    [47] Chung M H. Hydrodynamic performance of two-dimensional undulating foils in triangular. Journal of Mechanics, 2011, 27(2): 177−190
    [48] Pan Ding-Yi, Liu Hua, Shao Xue-Ming. Studies on the oscillation behavior of a flexible plate in the wake of a D-cylinder. Journal of Hydrodynamics, 2010, 22(5): 132−137
    [49] Shao Xue-Ming, Pan Ding-Yi, Deng Jian, Yu Zhao-Sheng. Hydrodynamic performance of a fishlike undulating foil in the wake of a cylinder. Physics of Fluids, 2010, 22(11): 111903
    [50] Xiao Qing, Sun Ke, Liu Hao, Hu Jian-Xin. Computational study on near wake interaction between undulation body and a D-section cylinder. Ocean Engineering, 2011, 38(4): 673−683
    [51] Xiao Qing, Liu Wen-Di, Hu Jian-Xin. Parametric study on a cylinder drag reduction using downstream undulating foil. European Journal of Mechanics B-Fluids, 2012, 36: 48−62
    [52] Chao Li-Ming, Zhang Dong, Cao Yong-Hui, Pan Guang. Numerical studies on the interaction between two parallel D-cylinder and oscillated foil. Modern Physics Letters B, 2018, 32(6): 1850034
    [53] Chao Li-Ming, Pan Guang, Zhang Dong, Yan Guo-Xin. On the thrust generation and wake structures of two travelling-wavy foils. Ocean Engineering, 2019, 183: 167−174
    [54] Khalid M S U, Akhtar I, Dong Hai-Bo. Hydrodynamics of a tandem fish school with asynchronous undulation of individuals. Journal of Fluids and Structures, 2016, 66: 19−35
    [55] Tian Fang-Bao, Wang Wen-Quan, Wu Jian, Sui Yi. Swimming performance and vorticity structures of a mother-calf pair of fish. Computers & Fluids, 2016, 124: 1−11
    [56] Tian Fang-Bao, Luo Hao-Xiang, Zhu Luo-Ding, Liao James, Lu Xi-Yun. An efficient immersed boundary-lattice Boltzmann method for the hydrodynamic interaction of elastic filaments. Journal of Computational Physics, 2011, 230(19): 7266−7283
    [57] Maertens A P, Gao A, Triantafyllou M S. Optimal undulatory swimming for a single fish-like body and for a pair of interacting swimmers. Journal of Fluid Mechanics, 2017, 813: 301−345
    [58] Li Gen, Kolomenskiy D, Liu Hao, Thiria B, Godoy-Diana R. On the energetics and stability of a minimal fish school. PLoS One, 2019, 14(8): e0215265
    [59] Wolfgang M J, Anderson J M, Grosenbaugh M A, Yue D K P, Triantafyllou M S. Near-body flow dynamics in swimming fish. Journal of Experimental Biology, 1999, 202(17): 2303−2327
    [60] Tchieu A A, Kanso E, Newton P K. The finite-dipole dynamical system. Proceedings of the Royal Society A, 2012, 468(2146): 3006−3026
    [61] Gazzola M, Tchieu A A, Alexeev D, Brauer A, Koumoutsakos P. Learning to school in the presence of hydrodynamic interactions. Journal of Fluid Mechanics, 2016, 789: 726−749
    [62] Novati G, Verma S, Alexeev D, Rossinelli D, van Rees W M, Koumoutsakos P. Synchronisation through learning for two self-propelled swimmers. Bioinspiration & Biomimetics, 2017, 12(3): 036001
    [63] Verma S, Novati G, Koumoutsakos P. Efficient collective swimming by harnessing vortices through deep reinforcement learning. Proceedings of the National Academy of Sciences, 2018, 115(23): 5849−5854
    [64] 王亮. 仿生鱼群自主游动及控制的研究. [博士论文], 河海大学, 2007

    Wang Liang. Numerical Simulation and Control of Self-Propelled Swimming of Bionics Fish School. [Ph.D.Dissertation], Hohai University, 2007
    [65] Dong Gen-Jin, Lu Xi-Yun. Characteristics of flow over traveling wavy foils in a side-by-side arrangement. Physics of Fluids, 2007, 19(5): 057107
    [66] Hemelrijk C K, Reid D A P, Hildenbrandt H, Padding J T. The increased efficiency of fish swimming in a school. Fish and Fisheries, 2015, 16(3): 511−521
    [67] Li Shu-Man, Li Chao, Xu Li-Yang, Yang Wen-Jing, Chen XuCan. Numerical simulation and analysis of fish-like robots swarm. Applied Sciences, 2019, 9(8): 1652
    [68] 谢春梅, 黄伟希. 前后排列柔性细丝在黏性流体中自主推进的稳定形态及动力学机制. 科学通报, 2017, 62: 2094−2103

    Xie Chun-Mei, Huang Wei-Xi. Stable states and mechanism of self-propulsion of two tandem filaments in viscous flow. Chinese Science Bulletin, 2017, 62: 2094−2103
    [69] Peng Ze-Rui, Huang Hai-Bo, Lu Xi-Yun. Collective locomotion of two closely spaced self-propelled flapping plates. Journal of Fluid Mechanics, 2018, 849: 1068−1095
    [70] Peng Ze-Rui, Huang Hai-Bo, Lu Xi-Yun. Hydrodynamic schooling of multiple self-propelled flapping plates. Journal of Fluid Mechanics, 2018, 853: 587−600
    [71] Peng Ze-Rui, Huang Hai-Bo, Lu Xi-Yun. Collective locomotion of two self-propelled flapping plates with different propulsive capacities. Physics of Fluids, 2018, 30(11): 111901
    [72] Dai Long-Zhen, He Guo-Wei, Zhang Xiang, Zhang Xing. Stable formations of self-propelled fish-like swimmers induced by hydrodynamic interactions. Journal of the Royal Society Interface, 2018, 15(147): 20180490
    [73] Lin Xing-Jian, Wu Jie, Zhang Tong-Wei, Yang Li-Ming. Self-organization of multiple self-propelling flapping foils: energy saving and increased speed. Journal of Fluid Mechanics, 2020, 884: R1 doi: 10.1017/jfm.2019.954
    [74] Lin Xing-Jian, He Guo-Yi, He Xin-Yi, Wang Qi, Chen Long-Sheng. Hydrodynamic studies on two wiggling hydrofoils in an oblique arrangement. Acta Mechanica Sinica, 2018, 34(3): 446−451
    [75] Lin Xing-Jian, He Guo-Yi, He Xin-Yi, Wang Qi. Dynamic response of a semi-free flexible filament in the wake of a flapping foil. Journal of Fluids and Structures, 2018, 83: 40−53
    [76] Lin Xing-Jian, Wu Jie, Zhang Tong-Wei, Yang Li-Ming. Phase difference effect on collective locomotion of two tandem autopropelled flapping foils. Physical Review Fluids, 2019, 4(5): 054101
    [77] Park S G, Sung H J. Hydrodynamics of flexible fins propelled in tandem, diagonal, triangular and diamond configurations. Journal of Fluid Mechanics, 2018, 840: 154−189
    [78] Chen Szu-Yung, Fei Yueh-Han, Chen Yi-Cheng, Chi Kai-Jung, Yang Jing-Tang. The swimming patterns and energy-saving mechanism revealed from three fish in a school. Ocean Engineering, 2016, 122: 22−31
    [79] Dewey P A, Boschitsch B M, Moored K W, Stone H A, Smits A J. Scaling laws for the thrust production of flexible pitching panels. Journal of Fluid Mechanics, 2013, 732(1): 29−46
    [80] Dewey P A, Quinn D B, Boschitsch B M, Smits A J. Propulsive performance of unsteady tandem hydrofoils in a side-by-side configuration. Physics of Fluids, 2014, 26(4): 041903
    [81] Boschitsch B M, Dewey P A, Smits A J. Propulsive performance of unsteady tandem hydrofoils in an in-line configuration. Physics of Fluids, 2014, 26(5): 051901
    [82] Ryuh Y S, Yang Gi-Hun, Liu Jin-Dong, Hu Huo-Sheng. A school of robotic fish for mariculture monitoring in the sea coast. Journal of Bionic Engineering, 2015, 12(1): 37−46
    [83] Becker A D, Masoud H, Newbolt J W, Shelley M, Ristroph L. Hydrodynamic schooling of flapping swimmers. Nature Communications, 2015, 6(1): 8514
    [84] 裴正楷, 李亮, 陈世明, 潘想, 谢广明. 机器鱼在线功率检测系统设计与实现. 测控技术, 2016, 35(11): 9−13 doi: 10.3969/j.issn.1000-8829.2016.11.003

    Pei Zheng-Kai, Li Liang, Chen Shi-Ming, Pan Xiang, Xie Guang-Ming. Design and implementation of online power capture system for robotic fish. Measurement & Control Technology, 2016, 35(11): 9−13 doi: 10.3969/j.issn.1000-8829.2016.11.003
    [85] 裴正楷, 刘俊恺, 陈世明, 李亮. 双鱼并排游动时水动力性能研究. 测控技术, 2016, 35(12): 16−20 doi: 10.3969/j.issn.1000-8829.2016.12.004

    Pei Zheng-Kai, Liu Jun-Kai, Chen Shi-Ming, Li Liang. Hydrodynamic performance of Beas swimming side by side. Measurement & Control Technology, 2016, 35(12): 16−20 doi: 10.3969/j.issn.1000-8829.2016.12.004
    [86] Zhang Zhen, Yang Tao, Zhang Tian-Hao, Zhou Fang-Hao, Cen Nuo, Li Tie-Feng, Xie Guang-Ming. Global vision-based formation control of soft robotic fish swarm. Soft Robotics, 2020, doi: 10.1089/soro.2019.0174
  • 加载中
计量
  • 文章访问数:  22
  • HTML全文浏览量:  9
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-05-09
  • 录用日期:  2020-10-04
  • 网络出版日期:  2020-12-21

目录

    /

    返回文章
    返回