2.845

2023影响因子

(CJCR)

  • 中文核心
  • EI
  • 中国科技核心
  • Scopus
  • CSCD
  • 英国科学文摘

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

非侵入式负荷监测综述

邓晓平 张桂青 魏庆来 彭伟 李成栋

邓晓平, 张桂青, 魏庆来, 彭伟, 李成栋. 非侵入式负荷监测综述. 自动化学报, 2022, 48(3): 644−663 doi: 10.16383/j.aas.c200270
引用本文: 邓晓平, 张桂青, 魏庆来, 彭伟, 李成栋. 非侵入式负荷监测综述. 自动化学报, 2022, 48(3): 644−663 doi: 10.16383/j.aas.c200270
Deng Xiao-Ping, Zhang Gui-Qing, Wei Qing-Lai, Peng Wei, Li Cheng-Dong. A survey on the non-intrusive load monitoring. Acta Automatica Sinica, 2022, 48(3): 644−663 doi: 10.16383/j.aas.c200270
Citation: Deng Xiao-Ping, Zhang Gui-Qing, Wei Qing-Lai, Peng Wei, Li Cheng-Dong. A survey on the non-intrusive load monitoring. Acta Automatica Sinica, 2022, 48(3): 644−663 doi: 10.16383/j.aas.c200270

非侵入式负荷监测综述

doi: 10.16383/j.aas.c200270
基金项目: 国家自然科学基金(61903226, 61573225), 山东省泰山学者计划(TSQN201812092), 山东省重点研发计划(2019GGX101072, 2019JZZY010115), 山东省高等学校青创科技计划(2019KJN005)资助
详细信息
    作者简介:

    邓晓平:山东建筑大学信息与电气工程学院讲师. 2008年和2013年分别获武汉大学电子信息科学与技术学士学位和通信与信息系统博士学位. 主要研究方向为通信信号处理与时序信号分析. E-mail: dengxiaoping19@sdjzu.edu.cn

    张桂青:山东建筑大学信息与电气工程学院教授. 1986年获山东建筑大学学士学位, 2002年获西安交通大学博士学位. 主要研究方向为智能控制方法, 智能建筑, 智能家居及物联网. E-mail: qqzhang@sdjzu.edu.cn

    魏庆来:中国科学院自动化研究所复杂系统管理与控制国家重点实验室研究员. 2009年获东北大学控制理论与控制工程专业博士学位. 主要研究方向为智能控制, 人工智能, 自学习系统, 自适应动态规划, 自适应最优控制, 数据驱动控制, 神经网络控制, 工业控制系统优化, 智能电网. E-mail: qinglai.wei@ia.ac.cn

    彭伟:山东建筑大学信息与电气工程学院讲师. 2015年获山东建筑大学硕士学位, 2018年获山东大学博士学位. 主要研究方向为智能控制方法, 物联网及智能建筑能效管理. E-mail: pengwei19@sdjzu.edu.cn

    李成栋:山东建筑大学信息与电气工程学院教授. 2004年和2007年分别获山东大学学士和硕士学位, 2010获中科院自动化研究所博士学位. 主要研究方向为主要研究方向为人工智能方法及应用, 智能建筑与智慧城市. 本文通信作者. E-mail: lichengdong@sdjzu.edu.cn

A Survey on the Non-intrusive Load Monitoring

Funds: Supported by National Natural Science Foundation of China (61903226, 61573225), Taishan Scholar Project of Shandong Province (TSQN201812092), Key Research and Development Program of Shandong Province (2019GGX101072, 2019JZZY010115), and the Youth Innovation Technology Project of Higher School in Shandong Province (2019KJN005)
More Information
    Author Bio:

    DENG Xiao-Ping Lecturer at the School of Information and Electrical Engineering, Shandong Jianzhu University. He received his bachelor degree in electronic information science and technology and Ph.D. degree in communication and information systems from Wuhan University, in 2008 and 2013, respectively. His research interest covers communication signal processing and time series analysis

    ZHANG Gui-Qing Professor at the School of Information and Electrical Engineering, Shandong Jianzhu University. He received his bachelor degree from Shandong Jianzhu University, in 1986 and the Ph.D. degree from Xi'an Jiaotong University, in 2002. His research interest covers intelligent control methods, intelligent buildings, smart home, and internet of things

    WEI Qing-Lai Professor at the State Key Laboratory for Management and Control of Complex Systems, Institute of Automation, Chinese Academy of Sciences. He received his Ph.D. degree in control theory and control engineering from Northeastern University China in 2009. His research interest covers intelligent control, artificial intelligence, learning systems, adaptive dynamic programming, adaptive optimal control, data-based control, neural network-based control, optimization in industrial systems, and smart grid

    PENG Wei Lecturer at the School of Information and Electrical Engineering, Shandong Jianzhu University. He received his master degree from Shandong Jianzhu University, in 2015 and Ph.D. degree from Shandong University, in 2018. His research interest covers intelligent control methods, internet of things, and energy efficiency management in smart buildings

    LI Cheng-Dong Professor at the School of Information and Electrical Engineering, Shandong Jianzhu University. He received his bachelor and master degrees from Shandong University, in 2004 and 2007, respectively, and Ph.D. degree from the Institute of Automation, Chinese Academy of Sciences, in 2010. His research interest covers artificial intelligence methods and applications, and smart building and smart city. Corresponding author of this paper

  • 摘要: 非侵入式负荷监测通过对总负荷电表数据进行分析处理, 能够实现对各个用电设备及其工作状态的辨识, 可广泛应用于建筑节能、智慧城市、智能电网等领域. 近年来, 随着智能电表的大规模部署以及各类机器学习算法的广泛应用, 非侵入式负荷监测引起了学术界与工业界的共同关注. 本文对非侵入式负荷监测方面的研究进行综述. 首先提炼非侵入式负荷监测的问题模型及基本框架; 然后分别对非侵入式负荷监测的数据采集与预处理过程、负荷分解模型与方法、常用数据集及评估指标进行归纳总结; 最后, 对目前研究中存在的挑战进行分析, 并对未来的研究方向进行展望.
  • 图  1  WoS数据库中相关期刊论文数量分布(2010 ~ 2019)

    Fig.  1  Number distribution of related journal article publications indexed by WoS (2010 ~ 2019)

    图  2  典型的非侵入式负荷监测系统框图

    Fig.  2  The diagram of a typical NILM system

    图  3  非侵入式负荷监测结果示意图

    Fig.  3  The illustration of NILM result

    图  4  非侵入式负荷监测典型流程图

    Fig.  4  Typical flowchart of NILM

    图  5  负荷特征分类

    Fig.  5  Taxonomy of load features

    图  6  负荷分解模型与算法分类

    Fig.  6  Taxonomy of load disaggregation models and algorithms

    图  7  隐马尔科夫模型示意图

    Fig.  7  The illustration of hidden Markov model

    图  8  因子隐马尔科夫模型示意图

    Fig.  8  The illustration of factorial hidden Markov model

    图  9  具有4个节点的图示例

    Fig.  9  A graph example with four nodes

    图  10  基于自动编码器的非侵入式负荷监测网络结构图

    Fig.  10  Network structure diagram of NILM based on automatic encoder

    表  1  NILM方法优缺点对比

    Table  1  Comparison of NILM methods

    方法优点缺点
    HMM模型直观运算量大
    精确推理困难
    GSP表征能力强现有算法相对较少
    训练周期短
    运算复杂度较低
    ML自动提取特征模型参数多
    分解准确率高训练所需数据量大
    泛化性能好可解释性差
    下载: 导出CSV

    表  2  非侵入式负荷监测公开数据集

    Table  2  Publicly available datasets for NILM

    数据集地点采集持续时间房屋
    数量
    传感器数量/
    房屋
    采集频率采集参数1其他数据
    REDD[9]美国几天 ~ 数月610 ~ 2415 kHz (Agg);
    0.5 Hz, 1 Hz (Sub)
    V, P (Agg); P (Sub)
    BERDS[149]美国1 年1NA20 sP, Q, S气候数据
    BLUED[150]美国8 天1112 kHz (Agg);
    20 Hz (Sub)
    I, V (P通过计算
    得出@60 Hz)
    各设备的状态转换标签
    Smart* Home[151]美国3 个月3A : 26;
    B, C : 21
    1 HzP, S (Agg); P (Sub)太阳能和风力发电数据, 气候,
    室内温湿度数据
    DRED[152]荷兰6 个月3121 HzE, P (Agg & Sub)室内外温度, 风速, 降水, 入住率,
    房屋布局, 设备配置, 无线信号
    Tracebase[153]德国1883 天
    (累计)
    15NA1 s, 8 s (Sub)P (Sub)用于设备识别, 未采集总表数据
    AMPds2[21, 154]加拿大2 年1211 minV, I, F, P, Q, S,
    F, E 等 10 项
    水表、天然气表数据,
    电费账单数据
    UK-DALE[155]英国2 个月 ~ 4.3 年
    55 ~ 5416 kHz (I, V of Agg); 6 s (Agg & Sub);
    1 s (Agg)
    P, I, V设备状态切换信息,
    住户人员构成
    及能源构成信息
    iAWE[156]印度73 天1331 Hz (Agg);
    1 s, 6 s (Sub)
    V, I, F, P, ph用水量和环境数据 (温度, 人员
    活动, 声音及无线信号强度)
    REFIT[157]英国2 年20108 sP天然气表和环境数据
    GREEND[159]意大利/
    奥地利
    1 年991 HzP用电负荷配置, 住户情况描述
    ECO[34]瑞士8 个月66 ~ 101 HzP, Q住户情况描述
    PLAID[160]美国56共 11 类, 大于 200 个设备30 kHzI, V
    EMBED[161]美国14 ~ 27 天3共 21 类, 约
    40 个设备
    12 kHz (Agg);
    1 ~ 2 Hz (Sub)
    I, V, P, Q, F各设备的状态转换标签, 入住率
    1 Agg: 总表; Sub: 分表; P: 有功功率; Q: 无功功率; S: 视在功率; E: 电量; F: 频率; V: 电压; I: 电流; ph: 相位.
    下载: 导出CSV
  • [1] Hart G W. Nonintrusive appliance load monitoring. Proceedings of the IEEE, 1992, 80(12): 1870-1891 doi: 10.1109/5.192069
    [2] Batra N, Singh A, Whitehouse K. If you measure it, can you improve it? Exploring the value of energy disaggregation. In: Proceedings of the 2nd ACM International Conference on Embedded Systems for Energy-Efficient Built Environments. Seoul, South Korea: ACM, 2015. 191−200
    [3] Bergés M, Goldman E, Matthews H S, Soibelman L. Enhancing electricity audits in residential buildings with nonintrusive load monitoring. Journal of Industrial Ecology, 2010, 14(5): 844-858 doi: 10.1111/j.1530-9290.2010.00280.x
    [4] Papadopoulos P M, Reppa V, Polycarpou M M, Panayiotou C G. Scalable distributed sensor fault diagnosis for smart buildings. IEEE/CAA Journal of Automatica Sinica, 2020, 7(3): 638-655 doi: 10.1109/JAS.2020.1003123
    [5] Qin J H, Wan Y N, Yu X H, Li F Y, Li C J. Consensus-based distributed coordination between economic dispatch and demand response. IEEE Transactions on Smart Grid, 2019, 10(4): 3709-3719 doi: 10.1109/TSG.2018.2834368
    [6] Wang Y, Chen Q X, Hong T, Kang C Q. Review of smart meter data analytics: Applications, methodologies, and challenges. IEEE Transactions on Smart Grid, 2019, 10(3): 3125-3148 doi: 10.1109/TSG.2018.2818167
    [7] Mohassel R R, Fung A, Mohammadi F, Raahemifar K. A survey on advanced metering infrastructure. International Journal of Electrical Power and Energy Systems, 2014, 63: 473-484
    [8] Armel K C, Gupta A, Shrimali G, Albert A. Is disaggregation the holy grail of energy efficiency? The case of electricity. Energy Policy, 2013, 52: 213-234 doi: 10.1016/j.enpol.2012.08.062
    [9] Kolter J Z, Johnson M J. Redd: a public data set for energy disaggregation research. In: Proceedings of the 1st SustKDD Workshop on Data Mining Applications in Sustainability. San Diego, USA: ACM, 2011. 1−6
    [10] Batra N, Parson O, Bergés M, Singh A, Rogers A. A comparison of non-intrusive load monitoring methods for commercial and residential buildings. arXiv: 1408.6595, 2014.
    [11] Zeifman M, Roth K. Nonintrusive appliance load monitoring: Review and outlook. IEEE Transactions on Consumer Electronics, 2011, 57(1): 76-84 doi: 10.1109/TCE.2011.5735484
    [12] Kelly J, Knottenbelt W. Neural NILM: Deep neural networks applied to energy disaggregation. In: Proceedings of the 2nd ACM International Conference on Embedded Systems for Energy-Efficient Built Environments. Seoul, South Korea: ACM, 2015. 55−64
    [13] Zhang C Y, Zhong M J, Wang Z Z, Goddard N, Sutton C. Sequence-to-point learning with neural networks for non-intrusive load monitoring. In: Proceedings of the 2017 AAAI Conference on Artificial Intelligence. New Orleans, USA: AAAI, 2017.
    [14] Calamaro N, Donko M, Shmilovitz D. A highly accurate nilm: with an electro-spectral space that best fits algorithm's national deployment requirements. Energies, 2021, 14(21): 7410
    [15] Zeifman M, Roth K. Viterbi algorithm with sparse transitions (vast) for nonintrusive load monitoring. In: Proceedings of the 2011 IEEE Symposium on Computational Intelligence Applications in Smart Grid (CIASG). Paris, France: IEEE, 2011. 1−8
    [16] Nakajima H, Nagasawa K, Shishido Y, Kagiya Y, Takagi Y. The state estimation of existing home appliances using signal analysis technique. In: Proceedings of the 2014 SICE Annual Conference (SICE). Sapporo, Japan: IEEE, 2014. 1247−1252
    [17] Makonin S, Popowich F, Bajić I V, Gill B, Bartram L. Exploiting hmm sparsity to perform online real-time nonintrusive load monitoring. IEEE Transactions on Smart Grid, 2016, 7(6): 2575-2585 doi: 10.1109/TSG.2015.2494592
    [18] Nguyen T K, Dekneuvel E, Jacquemod G, Nicolle B, Zammit O, Nguyen V C. Development of a real-time non-intrusive appliance load monitoring system: An application level model. International Journal of Electrical Power and Energy Systems, 2017, 90: 168-180
    [19] Gisler C, Ridi A, Zufferey D, Khaled O A, Hennebert J. Appliance consumption signature database and recognition test protocols. In: Proceedings of the 8th International Workshop on Systems, Signal Processing and their Applications (WoSSPA). Algiers, Algeria: IEEE, 2013. 336−341
    [20] Mei J, He D W, Harley R G, Habetler T G. Random forest based adaptive non-intrusive load identification. In: Proceedings of the 2014 International Joint Conference on Neural Networks (IJCNN). Beijing, China: IEEE, 2014. 1978−1983
    [21] Makonin S, Ellert B, Bajić I V, Popowich F. Electricity, water, and natural gas consumption of a residential house in Canada from 2012 to 2014. Scientific Data, 2016, 3: Article No. 160037 doi: 10.1038/sdata.2016.37
    [22] Hart G W. Prototype Nonintrusive Appliance Load Monitor, Technical Report RP. 2568-2, MIT Energy Laboratory and EPRI, USA, 1985,
    [23] Simpson C D. Principles of Electronics. Upper Saddle River: Prentice Hall, 1996. 85−102
    [24] Lee K D, Leeb S B, Norford L K, Armstrong P R, Holloway J, Shaw S R. Estimation of variable-speed-drive power consumption from harmonic content. IEEE Transactions on Energy Conversion, 2005, 20(3): 566-574 doi: 10.1109/TEC.2005.852963
    [25] Wichakool W, Avestruz A T, Cox R W, Leeb S B. Modeling and estimating current harmonics of variable electronic loads. IEEE Transactions on Power Electronics, 2009, 24(12): 2803-2811 doi: 10.1109/TPEL.2009.2029231
    [26] Gupta S, Reynolds M S, Patel S N. ElectriSense: Single-point sensing using EMI for electrical event detection and classification in the home. In: Proceedings of the 12th ACM International Conference on Ubiquitous Computing. Copenhagen, Denmark: ACM, 2010. 139−148
    [27] Tsai M S, Lin Y H. Modern development of an adaptive non-intrusive appliance load monitoring system in electricity energy conservation. Applied Energy, 2012, 96: 55-73 doi: 10.1016/j.apenergy.2011.11.027
    [28] Ahmadi H, Martí J R. Load decomposition at smart meters level using eigenloads approach. IEEE Transactions on Power Systems, 2015, 30(6): 3425-3436 doi: 10.1109/TPWRS.2014.2388193
    [29] Leeb S B, Shaw S R, Kirtley J L. Transient event detection in spectral envelope estimates for nonintrusive load monitoring. IEEE Transactions on Power Delivery, 1995, 10(3): 1200-1210 doi: 10.1109/61.400897
    [30] Baranski M, Voss J. Nonintrusive appliance load monitoring based on an optical sensor. In: Proceedings of the 2003 IEEE Bologna Power Tech Conference. Bologna, Italy: IEEE, 2003. Article No. 8
    [31] Klemenjak C, Egarter D, Elmenreich W. YoMo: The Arduino-based smart metering board. Computer Science-Research and Development, 2016, 31(1-2): 97-103 doi: 10.1007/s00450-014-0290-8
    [32] Makonin S, Sung W, Cruz R D, Yarrow B, Gill B, Popowich F, et al. Inspiring energy conservation through open source metering hardware and embedded real-time load disaggregation. In: Proceedings of the 2013 IEEE PES Asia-Pacific Power and Energy Engineering Conference (APPEEC). Hong Kong, China: IEEE, 2013. 1−6
    [33] Batra N, Dutta H, Singh A. INDiC: Improved non-intrusive load monitoring using load division and calibration. In: Proceedings of the 12th International Conference on Machine Learning and Applications. Miami, USA: IEEE, 2013. 79−84
    [34] Beckel C, Kleiminger W, Cicchetti R, Staake T, Santini S. The eco data set and the performance of non-intrusive load monitoring algorithms. In: Proceedings of the 1st ACM Conference on Embedded Systems for Energy-Efficient Buildings. Memphis, USA: ACM, 2014. 80−89
    [35] Powers J T, Margossian B, Smith B A. Using a rule-based algorithm to disaggregate end-use load profiles from premise-level data. IEEE Computer Applications in Power, 1991, 4(2): 42-47 doi: 10.1109/67.75875
    [36] Bergés M, Goldman E, Matthews H S, Soibelman L. Training load monitoring algorithms on highly sub-metered home electricity consumption data. Tsinghua Science and Technology, 2008, 13(S1): 406-411
    [37] Anderson K D, Bergés M, Ocneanu A, Benitez D, Moura J M F. Event detection for non intrusive load monitoring. In: Proceedings of the 38th Annual Conference on IEEE Industrial Electronics Society. Montreal, Canada: IEEE, 2012. 3312−3317
    [38] Rudin L I, Osher S, Fatemi E. Nonlinear total variation based noise removal algorithms. Physica D: Nonlinear Phenomena, 1992, 60(1-4): 259-268 doi: 10.1016/0167-2789(92)90242-F
    [39] Laughman C, Lee K, Cox R, Shaw S, Leeb S, Norford L, et al. Power Signature Analysis. IEEE Power and Energy Magazine, 2003, 1(2): 56-63 doi: 10.1109/MPAE.2003.1192027
    [40] Shaw S R, Leeb S B, Norford L K, Cox R W. Nonintrusive load monitoring and diagnostics in power systems. IEEE Transactions on Instrumentation and Measurement, 2008, 57(7): 1445-1454 doi: 10.1109/TIM.2008.917179
    [41] Peach N, Basseville M, Nikiforov I V. Detection of abrupt changes: Theory and applications. Journal of the Royal Statistical Society Series A-Statistics in Society, 1995, 158(1): 185-186 doi: 10.2307/2983416
    [42] Luo D, Norford L, Shaw S R, Leeb S B. Monitoring HVAC equipment electrical loads from a centralized location-methods and field test results. ASHRAE Transactions, 2002, 108(1): 841-857
    [43] Jazizadeh F. Building energy monitoring realization: Context-aware event detection algorithms for non-intrusive electricity disaggregation. In: Proceedings of the 2016 American Society of Civil Engineers Construction Research Congress. San Juan, Puerto Rico, USA: ASCE, 2016. 839−848
    [44] Jin Y W, Tebekaemi E, Bergés M, Soibelman L. Robust adaptive event detection in non-intrusive load monitoring for energy aware smart facilities. In: Proceedings of the 2011 IEEE International Conference on Acoustics, Speech and Signal Processing. Prague, Czech Republic: IEEE, 2011. 4340−4343
    [45] Yang C C, Soh C S, Yap V V. Comparative study of event detection methods for non-intrusive appliance load monitoring. Energy Procedia, 2014, 61: 1840-1843 doi: 10.1016/j.egypro.2014.12.225
    [46] De Baets L, Ruyssinck J, Develder C, Dhaene T, Deschrijver D. On the Bayesian optimization and robustness of event detection methods in NILM. Energy and Buildings, 2017, 145: 57-66 doi: 10.1016/j.enbuild.2017.03.061
    [47] Zhu Z C, Wei Z Q, Yin B, Zhang S, Wang X. A novel approach for event detection in non-intrusive load monitoring. In: Proceedings of the 2017 IEEE Conference on Energy Internet and Energy System Integration (EI2). Beijing, China: IEEE, 2017. 1−5
    [48] Afzalan M, Jazizadeh F, Wang J. Self-configuring event detection in electricity monitoring for human-building interaction. Energy and Buildings, 2019, 187: 95-109 doi: 10.1016/j.enbuild.2019.01.036
    [49] Bhattacharjee S, Kumar A, RoyChowdhury J. Appliance classification using energy disaggregation in smart homes. In: Proceedings of the 2014 International Conference on Computation of Power, Energy, Information and Communication (ICCPEIC). Chennai, India: IEEE, 2014. 1−6
    [50] Chou P A, Chang R I. Unsupervised adaptive non-intrusive load monitoring system. In: Proceedings of the 2013 IEEE International Conference on Systems, Man, and Cybernetics. Manchester, UK: IEEE, 2013. 3180−3185
    [51] Egarter D, Bhuvana V P, Elmenreich W. PALDi: Online load disaggregation via particle filtering. IEEE Transactions on Instrumentation and Measurement, 2015, 64(2): 467-477 doi: 10.1109/TIM.2014.2344373
    [52] Figueiredo M, Ribeiro B, De Almeida A. Electrical signal source separation via nonnegative tensor factorization using on site measurements in a smart home. IEEE Transactions on Instrumentation and Measurement, 2014, 63(2): 364-373 doi: 10.1109/TIM.2013.2278596
    [53] Gabaldón A, Ortiz-García M, Molina R, Valero-Verdú S. Disaggregation of the electric loads of small customers through the application of the Hilbert transform. Energy Efficiency, 2014, 7(4): 711-728 doi: 10.1007/s12053-013-9250-6
    [54] Kramer O, Klingenberg T, Sonnenschein M, Wilken O. Non-intrusive appliance load monitoring with bagging classifiers. Logic Journal of the IGPL, 2015, 23(3): 359-368 doi: 10.1093/jigpal/jzv016
    [55] Wang X J, Lei D M, Yong J, Zeng L Q, West S. An online load identification algorithm for non-intrusive load monitoring in homes. In: Proceedings of the 8th International Conference on Intelligent Sensors, Sensor Networks and Information. Melbourne, Australia: IEEE, 2013. 1−6
    [56] Wang Z Y, Zheng G L. Residential appliances identification and monitoring by a nonintrusive method. IEEE Transactions on Smart Grid, 2012, 3(1): 80-92 doi: 10.1109/TSG.2011.2163950
    [57] Racines D, Candelo J E, Montaña J. Non-intrusive electrical load monitoring system applying neural networks with combined steady-state electrical Variables. Tehnicki Vjesnik, 2018, 25(5): 1321-1329
    [58] Lu L L, Park S W, Wang B H. Electric load signature analysis for home energy monitoring system. International Journal of Fuzzy Logic and Intelligent Systems, 2012, 12(3): 193-197 doi: 10.5391/IJFIS.2012.12.3.193
    [59] Basu K, Debusschere V, Bacha S. Load identification from power recordings at meter panel in residential households. In: Proceedings of the 2012 International Conference on Electrical Machines. Marseille, France: IEEE, 2012. 2098−2104
    [60] Tina G M, Amenta V A, Tomarchio O, Di Modica G. Web interactive non intrusive load disaggregation system for active demand in smart grids. EAI Endorsed Transactions on Energy, 2014, 1(3): 1-9 doi: 10.4108/ew.1.3.e1
    [61] Hassan T, Javed F, Arshad N. An empirical investigation of V-I trajectory based load signatures for non-intrusive load monitoring. IEEE Transactions on Smart Grid, 2014, 5(2): 870-878 doi: 10.1109/TSG.2013.2271282
    [62] Du L, He D W, Harley R G, Habetler T G. Electric load classification by binary voltage-current trajectory mapping. IEEE Transactions on Smart Grid, 2016, 7(1): 358-365 doi: 10.1109/TSG.2015.2442225
    [63] Wang A L, Chen B X, Wang C G, Hua D D. Non-intrusive load monitoring algorithm based on features of V–I trajectory. Electric Power Systems Research, 2018, 157: 134-144 doi: 10.1016/j.jpgr.2017.12.012
    [64] Baptista D, Mostafa S S, Pereira L, Sousa L, Morgado-Dias F. Implementation strategy of convolution neural networks on field programmable gate arrays for appliance classification using the voltage and current (V-I) trajectory. Energies, 2018, 11(9): Article No. 2460 doi: 10.3390/en11092460
    [65] Yang C C, Soh C S, Yap V V. A systematic approach in load disaggregation utilizing a multi-stage classification algorithm for consumer electrical appliances classification. Frontiers in Energy, 2019, 13(2): 386-398 doi: 10.1007/s11708-017-0497-z
    [66] Liu Y C, Wang X, You W. Non-intrusive load monitoring by voltage-current trajectory enabled transfer learning. IEEE Transactions on Smart Grid, 2019, 10(5): 5609-5619 doi: 10.1109/TSG.2018.2888581
    [67] Wild B, Barsim K S, Yang B. A new unsupervised event detector for non-intrusive load monitoring. In: Proceedings of the 2015 Global Conference on Signal and Information Processing (GlobalSIP). Orlando, USA: IEEE, 2015. 73−77
    [68] He D W, Lin W X, Liu N, Harley R G, Habetler T G. Incorporating non-intrusive load monitoring into building level demand response. IEEE Transactions on Smart Grid, 2013, 4(4): 1870-1877 doi: 10.1109/TSG.2013.2258180
    [69] Du L, Restrepo J A, Yang Y, Harley R G, Habetler T G. Nonintrusive, self-organizing, and probabilistic classification and identification of plugged-in electric loads. IEEE Transactions on Smart Grid, 2013, 4(3): 1371-1380 doi: 10.1109/TSG.2013.2263231
    [70] Chang H H, Lin L S, Chen N M, Lee W J. Particle-swarm-optimization-based nonintrusive demand monitoring and load identification in smart meters. IEEE Transactions on Industry Applications, 2013, 49(5): 2229-2236 doi: 10.1109/TIA.2013.2258875
    [71] Bouhouras A S, Gkaidatzis P A, Chatzisavvas K C, Panagiotou E, Poulakis N, Christoforidis G C. Load signature formulation for non-intrusive load monitoring based on current measurements. Energies, 2017, 10(4): Article No. 538 doi: 10.3390/en10040538
    [72] Jimenez Y, Duarte C, Petit J, Meyer J, Schegner P, Carrrillo G. Steady state signatures in the time domain for nonintrusive appliance identification. Ingeniería e Investigación, 2015, 35(Sl): 58-64
    [73] Chang H H, Lian K L, Su Y C, Lee W J. Power-spectrum-based wavelet transform for nonintrusive demand monitoring and load identification. IEEE Transactions on Industry Applications, 2014, 50(3): 2081-2089 doi: 10.1109/TIA.2013.2283318
    [74] Chen K L, Chang H H, Chen N M. A new transient feature extraction method of power signatures for Nonintrusive Load Monitoring Systems. In: Proceedings of the 2013 IEEE International Workshop on Applied Measurements for Power Systems (AMPS). Aachen, Germany: IEEE, 2013. 79−84
    [75] Gillis J M, Morsi W G. Non-intrusive load monitoring using semi-supervised machine learning and wavelet design. IEEE Transactions on Smart Grid, 2017, 8(6): 2648-2655 doi: 10.1109/TSG.2016.2532885
    [76] Su Y C, Lian K L, Chang H H. Feature selection of non-intrusive load monitoring system using STFT and wavelet transform. In: Proceedings of the 8th International Conference on e-Business Engineering. Beijing, China: IEEE, 2011. 293−298
    [77] Jazizadeh F, Becerik-Gerber B, Bergés M, Soibelman L. An unsupervised hierarchical clustering based heuristic algorithm for facilitated training of electricity consumption disaggregation systems. Advanced Engineering Informatics, 2014, 28(4): 311-326 doi: 10.1016/j.aei.2014.09.004
    [78] Jiang L, Luo S H, Li J M. Intelligent electrical appliance event recognition using multi-load decomposition. Advanced Materials Research, 2013, 805-806: 1039-1045 doi: 10.4028/www.scientific.net/AMR.805-806.1039
    [79] Borin V P, Barriquello C H, Campos A. Approach for home appliance recognition using vector projection length and Stockwell transform. Electronics Letters, 2015, 51(24): 2035-2037 doi: 10.1049/el.2015.2385
    [80] Jimenez Y, Duarte C, Petit J, Carrillo G. Feature extraction for nonintrusive load monitoring based on S-transform. In: Proceedings of the 2014 Clemson University Power Systems Conference. Clemson, USA: IEEE, 2014. 1−5
    [81] Cole A I, Albicki A. Data extraction for effective non-intrusive identification of residential power loads. In: Proceedings of the 1998 IEEE Instrumentation and Measurement Technology Conference. St. Paul, USA: IEEE, 1998. 812−815
    [82] Patel S N, Robertson T, Kientz J A, Reynolds M S, Abowd G D. At the flick of a switch: Detecting and classifying unique electrical events on the residential power line. In: Proceedings of the 9th International Conference on Ubiquitous Computing. Innsbruck, Austria: Springer, 2007. 271−288
    [83] Lin Y H, Tsai M S. Development of an improved time–frequency analysis-based nonintrusive load monitor for load demand identification. IEEE Transactions on Instrumentation and Measurement, 2014, 63(6): 1470-1483 doi: 10.1109/TIM.2013.2289700
    [84] Norford L K, Leeb S B. Non-intrusive electrical load monitoring in commercial buildings based on steady-state and transient load-detection algorithms. Energy and Buildings, 1996, 24(1): 51-64 doi: 10.1016/0378-7788(95)00958-2
    [85] Chang H H. Non-intrusive demand monitoring and load identification for energy management systems based on transient feature analyses. Energies, 2012, 5(11): 4569-4589 doi: 10.3390/en5114569
    [86] Meehan P, McArdle C, Daniels S. An efficient, scalable time-frequency method for tracking energy usage of domestic appliances using a two-step classification algorithm. Energies, 2014, 7: 7041-7066 doi: 10.3390/en7117041
    [87] Liang J, Ng S K K, Kendall G, Cheng J W M. Load signature study―part I: Basic concept, structure, and methodology. IEEE Transactions on Power Delivery, 2010, 25(2): 551-560 doi: 10.1109/TPWRD.2009.2033799
    [88] Liang J, Ng S K K, Kendall G, Cheng J W M. Load signature study―part II: Disaggregation framework, simulation, and applications. IEEE Transactions on Power Delivery, 2010, 25(2): 561-569 doi: 10.1109/TPWRD.2009.2033800
    [89] Gulati M, Ram S S, Singh A. An in depth study into using EMI signatures for appliance identification. In: Proceedings of the 1st ACM Conference on Embedded Systems for Energy-Efficient Buildings. Memphis, USA: ACM, 2014. 70−79
    [90] Popescu F, Enache F, Vizitiu I C, Ciotirnae P. Recurrence plot analysis for characterization of appliance load signature. In: Proceedings of the 10th International Conference on Communications (COMM). Bucharest, Romania: IEEE, 2014. 1−4
    [91] Patri O P, Panangadan A V, Chelmis C, Prasanna V K. Extracting discriminative features for event-based electricity disaggregation. In: Proceedings of the 2014 IEEE Conference on Technologies for Sustainability. Portland, USA: IEEE, 2014. 232−238
    [92] Du L, Yang Y, He D W, Harley R G, Habetler T G. Feature extraction for load identification using long-term operating waveforms. IEEE Transactions on Smart Grid, 2015, 6(2): 819-826 doi: 10.1109/TSG.2014.2373314
    [93] Chang H H, Chen K L, Tsai Y P, Lee W J. A new measurement method for power signatures of nonintrusive demand monitoring and load identification. IEEE Transactions on Industry Applications, 2012, 48(2): 764-771 doi: 10.1109/TIA.2011.2180497
    [94] Chang H H. Genetic algorithms and non-intrusive energy management system based economic dispatch for cogeneration units. Energy, 2011, 36(1): 181-190 doi: 10.1016/j.energy.2010.10.054
    [95] Du Y, Du L, Lu B, Harley R, Habetler T. A review of identification and monitoring methods for electric loads in commercial and residential buildings. In: Proceedings of the 2010 IEEE Energy Conversion Congress and Exposition. Atlanta, USA: IEEE, 2010. 4527−4533
    [96] 武昕, 祁兵, 韩璐, 王震, 董超. 基于模板滤波的居民负荷非侵入式快速辨识算法. 电力系统自动化, 2017, 41(2): 135-141 doi: 10.7500/AEPS20160411001

    Wu Xin, Qi Bing, Han Lu, Wang Zhen, Dong Chao. Fast non-intrusive load identification algorithm for resident load based on template filtering. Automation of Electric Power Systems, 2017, 41(2): 135-141 doi: 10.7500/AEPS20160411001
    [97] 程祥, 李林芝, 吴浩, 丁一, 宋永华, 孙维真. 非侵入式负荷监测与分解研究综述. 电网技术, 2016, 40(10): 3108-3117

    Cheng Xiang, Li Lin-Zhi, Wu Hao, Ding Yi, Song Yong-Hua, Sun Wei-Zhen. A survey of the research on non-intrusive load monitoring and disaggregation. Power System Technology, 2016, 40(10): 3108-3117
    [98] Dong M, Meira P C M, Xu W, Freitas W. An event window based load monitoring technique for smart meters. IEEE Transactions on Smart Grid, 2012, 3(2): 787-796 doi: 10.1109/TSG.2012.2185522
    [99] Kolter J Z, Jaakkola T. Approximate inference in additive factorial HMMs with application to energy disaggregation. In: Proceedings of the 5th International Conference on Artificial Intelligence and Statistics. Canary Islands, Spain: JMLR, 2012. 1472−1482
    [100] Figueiredo M, De Almeida A, Ribeiro B. Home electrical signal disaggregation for non-intrusive load monitoring (NILM) systems. Neurocomputing, 2012, 96: 66-73 doi: 10.1016/j.neucom.2011.10.037
    [101] Yang C C, Soh C S, Yap V V. A systematic approach in appliance disaggregation using k-nearest neighbours and naive Bayes classifiers for energy efficiency. Energy Efficiency, 2018, 11(1): 239-259 doi: 10.1007/s12053-017-9561-0
    [102] Hidiyanto F, Halim A. Knn methods with varied k, distance and training data to disaggregate nilm with similar load characteristic. In: Proceedings of the 3rd Asia Pacific Conference on Research in Industrial and Systems Engineering (APCORISE 2020). Depok, Indonesia: ACM, 2020. 93−99
    [103] Nguyen M, Alshareef S, Gilani A, Morsi W G. A novel feature extraction and classification algorithm based on power components using single-point monitoring for NILM. In: Proceedings of the 28th Canadian Conference on Electrical and Computer Engineering (CCECE). Halifax, Canada: IEEE, 2015. 37−40
    [104] Buddhahai B, Wongseree W, Rakkwamsuk P. A non-intrusive load monitoring system using multi-label classification approach. Sustainable Cities and Society, 2018, 39(10): 621-630
    [105] Hoyo-Montano J A, León-Ortega N, Valencia-Palomo G, Galaz-Bustamante R A, Espejel-Blanco D F, Vázquez-Palma M G. Non-intrusive electric load identification using wavelet transform. Ingeniería e Investigación, 2018, 38(2): 42-51
    [106] Su S, Yan Y T, Lu H, Li K P, Sun Y P, Wang F, et al. Non-intrusive load monitoring of air conditioning using low-resolution smart meter data. In: Proceedings of the 2016 IEEE International Conference on Power System Technology (POWERCON). Wollongong, Australia: IEEE, 2016. 1−5
    [107] Singh M, Kumar S, Semwal S, Prasad R S. Residential load signature analysis for their segregation using wavelet—SVM. In: Proceedings of the 2015 Power Electronics and Renewable Energy Systems. New Delhi, India: Springer, 2015. 863−871
    [108] Chui K T, Lytras M, Visvizi A. Energy sustainability in smart cities: Artificial intelligence, smart monitoring, and optimization of energy consumption. Energies, 2018, 11(11): Article No. 2869 doi: 10.3390/en11112869
    [109] Su D L, Shi Q, Xu H, Wang W. Nonintrusive load monitoring based on complementary features of spurious emissions. Electronics, 2019, 8(9): Article No. 1002 doi: 10.3390/electronics8091002
    [110] Chang H H, Lee M C, Lee W J, Chien C L, Chen N M. Feature extraction-based Hellinger distance algorithm for nonintrusive aging load identification in residential buildings. IEEE Transactions on Industry Applications, 2016, 52(3): 2031-2039 doi: 10.1109/TIA.2016.2533487
    [111] Lin Y H, Hu Y C. Electrical energy management based on a hybrid artificial neural network-particle swarm optimization-integrated two-stage non-intrusive load monitoring process in smart homes. Processes, 2018, 6(12): Article No. 236 doi: 10.3390/pr6120236
    [112] Yang C C, Soh C S, Yap V V. A systematic approach to ON-OFF event detection and clustering analysis of non-intrusive appliance load monitoring. Frontiers in Energy, 2015, 9(2): 231-237 doi: 10.1007/s11708-015-0358-6
    [113] Cipriano X, Vellido A, Cipriano J, Martí-Herrero J, Danov S. Influencing factors in energy use of housing blocks: A new methodology, based on clustering and energy simulations, for decision making in energy refurbishment projects. Energy Efficiency, 2017, 10(2): 359-382 doi: 10.1007/s12053-016-9460-9
    [114] De Baets L, Develder C, Dhaene T, Deschrijver D. Detection of unidentified appliances in non-intrusive load monitoring using Siamese neural networks. International Journal of Electrical Power and Energy Systems, 2019, 104: 645-653
    [115] 黄雅婷, 石晶, 许家铭, 徐波. 鸡尾酒会问题与相关听觉模型的研究现状与展望. 自动化学报, 2019, 45(2): 234-251

    Huang Ya-Ting, Shi Jing, Xu Jia-Ming, Xu Bo. Research advances and perspectives on the cocktail party problem and related auditory models. Acta Automatica Sinica, 2019, 45(2): 234-251
    [116] Zhong M, Goddard N, Sutton C. Signal aggregate constraints in additive factorial HMMS, with application to energy disaggregation. In: Proceedings of the 27th International Conference on Neural Information Processing Systems. Montreal, Canada: ACM, 2014. 3590−3598
    [117] Alshareef S, Morsi W G. Application of wavelet-based ensemble tree classifier for non-intrusive load monitoring. In: Proceedings of the 2015 IEEE Electrical Power and Energy Conference (EPEC). London, Canada: IEEE, 2015. 397−401
    [118] Liu H, Wu H P, Yu C M. A hybrid model for appliance classification based on time series features. Energy and Buildings, 2019, 196: 112-123 doi: 10.1016/j.enbuild.2019.05.028
    [119] Tabatabaei S M, Dick S, Xu W. Toward non-intrusive load monitoring via multi-label classification. IEEE Transactions on Smart Grid, 2017, 8(1): 26-40 doi: 10.1109/TSG.2016.2584581
    [120] Wu X, Gao Y C, Jiao D. Multi-label classification based on random forest algorithm for non-intrusive load monitoring system. Processes, 2019, 7(6): Article No. 337 doi: 10.3390/pr7060337
    [121] Li D, Dick S. Residential household non-intrusive load monitoring via graph-based multi-label semi-supervised learning. IEEE Transactions on Smart Grid, 2019 10(4): 4615-4627 doi: 10.1109/TSG.2018.2865702
    [122] Bishop C M. Pattern Recognition and Machine Learning. New York: Springer, 2006. 610−631
    [123] Zia T, Bruckner D, Zaidi A. A hidden Markov model based procedure for identifying household electric loads. In: Proceedings of the 37th Annual Conference of the IEEE Industrial Electronics Society. Melbourne, Australia: IEEE, 2011. 3218−3223
    [124] Ghahramani Z, Jordan M I. Factorial hidden Markov models. Machine Learning, 1997, 29(2-3): 245-273
    [125] Shaloudegi K, Gyürgy A, Szepesvári C, Xu W. SDP relaxation with randomized rounding for energy disaggregation. In: Proceedings of the 29th Conference on Neural Information Processing Systems (NIPS 2016). Barcelona, Spain: Curran Associates, 2016. 4985−4993
    [126] Bonfigli R, Principi E, Fagiani M, Severini M, Squartini S, Piazza F. Non-intrusive load monitoring by using active and reactive power in additive factorial hidden Markov models. Applied Energy, 2017, 208: 1590-1607 doi: 10.1016/j.apenergy.2017.08.203
    [127] Mengistu M A, Girmay A A, Camarda C, Acquaviva A A, Patti E. A cloud-based on-line disaggregation algorithm for home appliance loads. IEEE Transactions on Smart Grid, 2019, 10(3): 3430-3439 doi: 10.1109/TSG.2018.2826844
    [128] Qin J H, Wan Y N, Yu X H, Kang Y. A newton method-based distributed algorithm for multi-area economic dispatch. IEEE Transactions on Power Systems, 2020, 35(2): 986-996 doi: 10.1109/TPWRS.2019.2943344
    [129] Sandryhaila A, Moura J M F. Big data analysis with signal processing on graphs: Representation and processing of massive data sets with irregular structure. IEEE Signal Processing Magazine, 2014, 31(5): 80-90 doi: 10.1109/MSP.2014.2329213
    [130] Ortega A, Frossard P, Kovačević J, Moura J M F, Vandergheynst P. Graph signal processing: Overview, challenges, and applications. Proceedings of the IEEE, 2018, 106(5): 808-828 doi: 10.1109/JPROC.2018.2820126
    [131] Shuman D I, Narang S K, Frossard P, Ortega A, Vandergheynst P. The emerging field of signal processing on graphs: Extending high-dimensional data analysis to networks and other irregular domains. IEEE Signal Processing Magazine, 2013, 30(3): 83-98 doi: 10.1109/MSP.2012.2235192
    [132] Zhao B C, Stankovic L, Stankovic V. On a training-less solution for non-intrusive appliance load monitoring using graph signal processing. IEEE Access, 2016, 4: 1784-1799 doi: 10.1109/ACCESS.2016.2557460
    [133] He K, Stankovic L, Liao J, Stankovic V. Non-intrusive load disaggregation using graph signal processing. IEEE Transactions on Smart Grid, 2018, 9(3): 1739-1747 doi: 10.1109/TSG.2016.2598872
    [134] Qi B, Liu L Y, Wu X. Low-rate nonintrusive load disaggregation for resident load based on graph signal processing. IEEJ Transactions on Electrical and Electronic Engineering, 2018, 13(12): 1833-1834 doi: 10.1002/tee.22746
    [135] Mauch L, Yang B. A new approach for supervised power disaggregation by using a deep recurrent LSTM network. In: Proceedings of the 2015 IEEE Global Conference on Signal and Information Processing (GlobalSIP). Orlando, USA: IEEE, 2015. 63−67
    [136] Mauch L, Yang Bin. A novel DNN-HMM-based approach for extracting single loads from aggregate power signals. In: Proceedings of the 2016 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP). Shanghai, China: IEEE, 2016. 2384−2388
    [137] Bonfigli R, Felicetti A, Principi E, Fagiani M, Squartini S, Piazza F. Denoising autoencoders for non-intrusive load monitoring: Improvements and comparative evaluation. Energy and Buildings, 2018, 158: 1461-1474 doi: 10.1016/j.enbuild.2017.11.054
    [138] Xia M, Liu W A, Xu Y Q, Wang K, Zhang X. Dilated residual attention network for load disaggregation. Neural Computing and Applications, 2019, 31(12): 8931-8953 doi: 10.1007/s00521-019-04414-3
    [139] Barsim K S, Yang B. On the feasibility of generic deep disaggregation for single-load extraction. arXiv: 1802.02139, 2018.
    [140] Tan C Q, Sun F C, Kong T, Zhang W C, Yang C, Liu C F. A survey on deep transfer learning. In: Proceedings of the 27th International Conference on Artificial Neural Networks and Machine Learning. Rhodes, Greece: Springer, 2018. 270−279
    [141] De Baets L, Ruyssinck J, Develder C, Dhaene T, Deschrijver D. Appliance classification using vi trajectories and convolutional neural networks. Energy and Buildings, 2018, 158: 32-36 doi: 10.1016/j.enbuild.2017.09.087
    [142] Singh S, Majumdar A. Deep sparse coding for non-intrusive load monitoring. IEEE Transactions on Smart Grid, 2018, 9(5): 4669-4678 doi: 10.1109/TSG.2017.2666220
    [143] Singhal V, Maggu J, Majumdar A. Simultaneous detection of multiple appliances from smart-meter measurements via multi-label consistent deep dictionary learning and deep transform learning. IEEE Transactions on Smart Grid, 2019, 10(3): 2969-2978. doi: 10.1109/TSG.2018.2815763
    [144] Nalmpantis C, Vrakas D. Machine learning approaches for non-intrusive load monitoring: From qualitative to quantitative comparation. Artificial Intelligence Review, 2018, 52(1): 217-243
    [145] Kim H, Marwah M, Arlitt M, Lyon G, Han J W. Unsupervised disaggregation of low frequency power measurements. In: Proceedings of the 7th SIAM International Conference on Data Mining. Mesa, USA: SIANM, 2011. 747−758
    [146] Makonin S, Popowich F. Nonintrusive load monitoring (NILM) performance evaluation. Energy Efficiency, 2015, 8(4): 809-814 doi: 10.1007/s12053-014-9306-2
    [147] Lange H, Bergs M. Efficient inference in dual-emission FHMM for energy disaggregation. In: Proceedings of the 30th AAAI Conference on Artificial Intelligence Artificial Intelligence for Smart Grids and Smart Buildings. Phoenix, USA: AAAI, 2016. 248−254
    [148] Pereira L, Nunes N. An experimental comparison of performance metrics for event detection algorithms in NILM. In: Proceedings of the 4th International Workshop on Non-Intrusive Load Monitoring. Austin, USA: IEEE, 2018. 1−4
    [149] Maasoumy M, Sanandaji B M, Poolla K, Vincentelli A S. Berds-berkeley energy disaggregation data set. In: Proceedings of the 26th International Conference on Neural Inform−ation Processing Systems. Lake Tahoe, USA: Curran Associates, Inc., 2013. 1−6
    [150] Anderson K, Ocneanu A, Benitez D, Carlson D, Rowe A, Bergés M. Blued: A fully labeled public dataset for event-based non-intrusive load monitoring research. In: Proceedings of the 2nd KDD Workshop on Data Mining Applications in Sustainability. Beijing, China: ACM, 2012. 12−16
    [151] Barker S, Mishra A, Irwin D, Cecchet E, Shenoy P, Albrecht J. Smart*: An open data set and tools for enabling research in sustainable homes. In: Proceedings of the 2012 Workshop on Data Mining Applications in Sustainability (SustKDD 2012). Beijing, China: ACM, 2012. 1−6
    [152] Nambi A S N U, Lua A R, Prasad V R. LocED: Location-aware energy disaggregation framework. In: Proceedings of the 2nd ACM International Conference on Embedded Systems for Energy-Efficient Built Environments. Seoul, Korea (South): ACM, 2015. 45−54
    [153] Reinhardt A, Burkhardt D, Zaheer M, Steinmetz R. Electric appliance classification based on distributed high resolution current sensing. In: Proceedings of the 37th Annual IEEE Conference on Local Computer Networks. Clearwater, USA: IEEE, 2012. 999−1005
    [154] Makonin S, Popowich F, Bartram L, Gill B, Bajić I V. AMPds: A public dataset for load disaggregation and eco-feedback research. In: Proceedings of the 2013 IEEE Electrical Power and Energy Conference. Halifax, Canada: IEEE, 2013. 1−6
    [155] Kelly J, Knottenbelt W. The UK-DALE dataset, domestic appliance-level electricity demand and whole-house demand from five UK homes. Scientific Data, 2015, 2: Article No. 150007 doi: 10.1038/sdata.2015.7
    [156] Batra N, Gulati M, Singh A, Srivastava M B. It’s different: Insights into home energy consumption in India. In: Proceedings of the 5th ACM Workshop on Embedded Systems for Energy-Efficient Buildings. Roma, Italy: ACM, 2013. 1−8
    [157] Murray D, Stankovic L, Stankovic V. An electrical load measurements dataset of united kingdom households from a two-year longitudinal study. Scientific Data, 2017, 4: Article No. 160122 doi: 10.1038/sdata.2016.122
    [158] Shin C, Rho S, Lee H, Rhee W. Data requirements for applying machine learning to energy disaggregation. Energies, 2019, 12(9): Article No. 1696 doi: 10.3390/en12091696
    [159] Monacchi A, Egarter D, Elmenreich W, D'Alessandro S, Tonello A M. GREEND: An energy consumption dataset of households in Italy and Austria. In: Proceedings of the 2014 IEEE International Conference on Smart Grid Communications. Venice, Italy: IEEE, 2014. 511−516
    [160] Gao J K, Giri S, Kara E C, Bergés M. PLAID: A public dataset of high-resoultion electrical appliance measurements for load identification research: Demo abstract. In: Proceedings of the 1st ACM Conference on Embedded Systems for Energy-Efficient Buildings. Memphis, USA: ACM, 2014. 198−199
    [161] Jazizadeh F, Afzalan M, Becerik-Gerber B, Soibelman L. EMBED: A dataset for energy monitoring through building electricity disaggregation. In: Proceedings of the 9th International Conference on Future Energy Systems. Karlsruhe, Germany: ACM, 2018. 230−235
    [162] Parson O, Fisher G, Hersey A, Batra N, Kelly J, Singh A, et al. Dataport and NILMTK: A building data set designed for non-intrusive load monitoring. In: Proceedings of the 2015 IEEE Global Conference on Signal and Information Processing (GlobalSIP). Orlando, USA: IEEE, 2015. 210−214
    [163] Batra N, Kukunuri R, Pandey A, Malakar R, Kumar R, et al. Towards reproducible state-of-the-art energy disaggregation. In: Proceedings of the 6th ACM International Conference on Systems for Energy-Efficient Buildings, Cities, and Transportation. New York, USA: ACM, 2019. 193−202
    [164] 白昱阳, 黄彦浩, 陈思远, 张俊, 李柏青, 王飞跃. 云边智能: 电力系统运行控制的边缘计算方法及其应用现状与展望. 自动化学报, 2020, 46(3): 397-410

    Bai Yu-Yang, Huang Yan-Hao, Chen Si-Yuan, Zhang Jun, Li Bai-Qing, Wang Fei-Yue. Cloud-edge intelligence: Status quo and future prospective of edge computing approaches and applications in power system operation and control. Acta Automatica Sinica, 2020, 46(3): 397-410
    [165] Kairouz P, McMahan H B, Avent B, Bellet A, Bennis M, Bhagoji A N, Bonawitz K, et al. Advances and open problems in federated learning. Machine Learning, 2021, 14(1-2): 1-210
    [166] Wu Z H, Pan S R, Chen F W, Long G D, Zhang C Q, Yu P S. A comprehensive survey on graph neural networks. IEEE Transactions on Neural Networks and Learning Systems, 2021, 32(1): 4-24 doi: 10.1109/TNNLS.2020.2978386
  • 加载中
图(10) / 表(2)
计量
  • 文章访问数:  4253
  • HTML全文浏览量:  3073
  • PDF下载量:  688
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-04-30
  • 录用日期:  2020-08-27
  • 网络出版日期:  2022-02-14
  • 刊出日期:  2022-03-25

目录

    /

    返回文章
    返回