2.845

2023影响因子

(CJCR)

  • 中文核心
  • EI
  • 中国科技核心
  • Scopus
  • CSCD
  • 英国科学文摘

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于延迟回声状态网的光伏电池板温度预测方法

范思远 姚显双 曹生现 赵波

范思远, 姚显双, 曹生现, 赵波. 基于延迟回声状态网的光伏电池板温度预测方法. 自动化学报, 2020, 46(12): 2701−2710 doi: 10.16383/j.aas.c200167
引用本文: 范思远, 姚显双, 曹生现, 赵波. 基于延迟回声状态网的光伏电池板温度预测方法. 自动化学报, 2020, 46(12): 2701−2710 doi: 10.16383/j.aas.c200167
Fan Si-Yuan, Yao Xian-Shuang, Cao Sheng-Xian, Zhao Bo. Temperature prediction of photovoltaic panels based on delayed echo state network. Acta Automatica Sinica, 2020, 46(12): 2701−2710 doi: 10.16383/j.aas.c200167
Citation: Fan Si-Yuan, Yao Xian-Shuang, Cao Sheng-Xian, Zhao Bo. Temperature prediction of photovoltaic panels based on delayed echo state network. Acta Automatica Sinica, 2020, 46(12): 2701−2710 doi: 10.16383/j.aas.c200167

基于延迟回声状态网的光伏电池板温度预测方法

doi: 10.16383/j.aas.c200167
基金项目: 国家重点研发计划(2018YFB1500800), 吉林省科技发展计划(20190302079GX), 吉林市科技创新发展计划(201830819)资助
详细信息
    作者简介:

    范思远:东北电力大学博士研究生. 2018年获得东北电力大学仪器科学与技术硕士学位. 主要研究方向为新能源发电系统检测及智能控制.E-mail: fans@neepu.edu.cn

    姚显双:工学博士, 东北电力大学副教授. 主要研究方向为新能源发电系统建模与控制.E-mail: xianshuang_yao@163.com

    曹生现:工学博士, 东北电力大学教授. 主要研究方向为新能源发电测控技术. 本文通信作者.E-mail: csxlb_jl@163.com

    赵波:工学博士, 东北电力大学副教授. 主要研究方向为新能源发电检测技术与自动化装置, 表面污垢监测与控制.E-mail: zhaobo@neepu.edu.cn

Temperature Prediction of Photovoltaic Panels Based on Delayed Echo State Network

Funds: Supported by National Key Research and Development Program of China (2018YFB1500800), Science and Technology Development Program of Jilin Province (20190302079GX), Science and Technology Innovation Development Program of Jilin City (201830819)
  • 摘要: 光伏电池温度变化影响光伏系统输出的稳定性, 精准地预测光伏电池板温度的变化趋势, 对光伏系统智能运行具有重要意义. 为了更好地预测温度的变化趋势, 本文考虑了光伏电池板温度的迟滞效应, 将先前的温度输出作为延迟项引入回声状态网中, 提出了一种基于延迟回声状态网的光伏电池板温度预测模型. 给出一个延迟回声状态网具有回声状态特性的判定条件, 使得预测模型能够稳定地预测光伏电池板温度. 同时, 建立了一套光伏多传感器监测系统, 利用该监测系统采集的数据, 训练和验证模型的准确性. 与回声状态网(Echo state network, ESN), Leaky ESN (Leaky-integrator ESN)和VML ESN (ESN with variable memory length)相比, 仿真结果表明, 本文所提出的延迟回声状态网具有更好的预测性能, 平均绝对百分比误差甚至达到3.45%.
  • 图  1  回声状态网络的结构

    Fig.  1  The structure of echo state network

    图  2  延迟回声状态网络的结构

    Fig.  2  The structure of delayed echo state network

    图  3  光伏电池板多传感器监测系统

    Fig.  3  Multi-sensor monitoring system for PV panel

    图  4  四种方法的预测输出和原始数据

    Fig.  4  The actual output and original data of four methods

    图  5  四种方法的预测误差

    Fig.  5  The prediction error of four methods

    图  6  不同延迟因子和储备池规模优化性能分析

    Fig.  6  The optimization performance analysis of different delay factors and sizes of reservoir

    表  1  监测系统记录的数据

    Table  1  Data recorded by monitoring system

    时间 输入 输出
    光照幅度
    (W/m2)
    环境温度
    (℃)
    风速
    (m/s)
    风向
    (°)
    电池板温度
    (℃)
    8:00 585 25.10 2.2 205 34.53
    8:15 610 26.50 2.0 224 35.79
    8:30 649 26.50 2.1 252 35.62
    8:45 665 27.30 2.9 199 38.60
    $\vdots $ $\vdots $ $\vdots $ $\vdots $ $\vdots $ $\vdots $
    15:15 699 32.50 2.2 242 45.22
    15:30 518 32.30 2.6 242 41.97
    15:45 311 31.10 3.2 273 38.62
    16:00 159 30.80 2.4 205 34.64
    下载: 导出CSV

    表  2  延迟回声状态网储备池参数

    Table  2  The reservoir parameters of delayed ESN

    储备池规模 谱半径 稀疏度 (%) 训练样本长度
    50 0.82 2 1400
    下载: 导出CSV

    表  3  四种方法的预测精度对比

    Table  3  Comparison of prediction accuracy of four methods

    预测模型 储备池规模 训练 RMSE 测试 RMSE 测试 MAPE (%)
    ESN[10] 50 0.66058 1.4475 6.81
    Leaky ESN[25] 50 0.5922 1.2052 5.27
    VML ESN[29] 50 0.47278 0.7931 4.17
    延迟 ESN 50 0.42802 0.6399 3.45
    下载: 导出CSV

    表  4  延迟回声状态网不同储备池规模性能分析

    Table  4  Delayed ESN performance analysis for different sizes of reservoir

    储备池规模 (N) 样本长度 评价指标 (测试MAPE)
    20 1400 0.0514
    30 1400 0.0495
    40 1400 0.0407
    50 1400 0.0345
    60 1400 0.0352
    70 1400 0.0667
    80 1400 0.0542
    90 1400 0.0571
    下载: 导出CSV
  • [1] 周孝信, 陈树勇, 鲁宗相, 黄彦浩, 马士聪, 赵强. 能源转型中我国新一代电力系统的技术特征. 中国电机工程学报, 2018, 38(7): 1893−1904, 2205

    Zhou Xiao-Xin, Chen Shu-Yong, Lu Zong-Xiang, Huang Yan-Hao, Ma Shi-Cong, Zhao Qiang. Technology features of the new generation power system in China. Proceedings of the Chinese Society for Electrical Engineering, 2018, 38(7): 1893−1904, 2205
    [2] 赵志刚, 张纯杰, 苟向锋, 桑虎堂. 基于粒子群优化支持向量机的太阳电池温度预测. 物理学报, 2015, 64(8): 380−386

    Zhao Zhi-Gang, Zhang Chun-Jie, Gou Xiang-Feng, Sang Hu-Tang. Solar cell temperature prediction model of support vector machine optimized by particle swarm optimization algorithm. Acta Physica Sinica, 2015, 64(8): 380−386
    [3] 徐瑞东, 戴瀹, 孙晓燕. 基于BP神经网络的光伏阵列温度预测. 工矿自动化, 2012, (7): 63−67

    Xu Rui-Dong, Dai Yue, Sun Xiao-Yan. Temperature prediction of photovoltaic array based on BP neural network. Industry and Mine Automation, 2012, (7): 63−67
    [4] Xu R D, Wu J W, Sun X Y. Photovoltaic module temperature prediction with Gaussian process. International Journal of Advanced Mechatronic Systems, 2012, 4(3/4): 187−196 doi: 10.1504/IJAMECHS.2012.051563
    [5] Ceylan İ, Erkaymaz O, GedikG E, Gürel A E. The prediction of photovoltaic module temperature with artificial neural networks. Case Studies in Thermal Engineering, 2014, 3: 11−20 doi: 10.1016/j.csite.2014.02.001
    [6] 彭飞, 任敬国, 陈玉峰, 辜超, 朱文兵. 计及表面纹理结构的晶硅太阳电池温度预测模型. 太阳能学报, 2016, 37(2): 337−343 doi: 10.3969/j.issn.0254-0096.2016.02.012

    Peng Fei, Ren Jing-Guo, Chen Yu-Feng, Gu Chao, Zhu Wen-Bing. Temperature predication model for crystalline silicon solar cell considering surface textured structure. Acta Energiae Solars Sinica, 2016, 37(2): 337−343 doi: 10.3969/j.issn.0254-0096.2016.02.012
    [7] Sun Y J, Wang F, Zhen Z, Mi Z Q, Liu C, Wang B, Lu J. Research on short-term module temperature prediction model based on BP neural network for photovoltaic power forecasting. In: Proceedings of the 2015 IEEE Power and Energy Society General Meeting. Colorado, USA: IEEE, 2015. 1−5
    [8] Sun Y J, Wang F, Mi Z Q, Zhen Z, Sun H B, Lu J, et al. Short-term prediction model of module temperature for photovoltaic power forcasting based on support vector machine. In: Proceedings of the 2015 International Conference on Renewable Power Generation. Beijing, China: IET, 2015.
    [9] Jakhrani A Q, Othman A K, Rigit A R H, Samo S R. Determination and comparison of different photovoltaic module temperature models for Kuching, Sarawak. In: Proceedings of the 2011 Clean Energy and Technology. Kuala Lumpur, Malaysia: IEEE, 2011. 231−236
    [10] Jaeger H, Hass H. Harnessing nonlinearity: predicting chaotic systems and saving energy in wireless communication. Science, 2004, 304(5667): 78−80 doi: 10.1126/science.1091277
    [11] Gallicchio C, Micheli A, Pedrelli L. Design of deep echo state networks. Neural Networks, 2018, 108: 33−47 doi: 10.1016/j.neunet.2018.08.002
    [12] Gallicchio C, Micheli A. Deep reservoir neural networks for trees. Information Sciences, 2019, 480: 174−193 doi: 10.1016/j.ins.2018.12.052
    [13] Chitsazan M A, Fadali M S, Trzynadlowski A M. Wind speed and wind direction forecasting using echo state network with nonlinear functions. Renewable Energy, 2019, 131: 879−889 doi: 10.1016/j.renene.2018.07.060
    [14] Matino I, Dettori S, Colla V, Weber V, Salame S. Forecasting blast furnace gas production and demand through echo state neural network-based models: Pave the way to off-gas optimized management. Applied Energy, 2019, 253: 113578 doi: 10.1016/j.apenergy.2019.113578
    [15] Matino I, Dettori S, Colla V, Weber V, Salame S. Application of echo state neural networks to forecast blast furnace gas production: pave the way to off-gas optimized management. Energy Procedia, 2019, 158: 4037−4042 doi: 10.1016/j.egypro.2019.01.835
    [16] 伦淑娴, 林健, 姚显双. 基于小世界回声状态网的时间序列预测. 自动化学报, 2015, 41(9): 1669−1679

    Lun Shu-Xian, Lin Jian, Yao Xian-Shuang. Time series prediction with an improved echo state network using small world network. Acta Automatica Sinica, 2015, 41(9): 1669−1679
    [17] 许美玲, 王依雯. 基于改进差分进化和回声状态网络的时间序列预测研究. 自动化学报, 2019, DOI: 10.16383/j.aas.c180549

    Xu Mei-Ling, Wang Yi-Wen. Time series prediction based on improved differential evolution and echo state network. Acta Automatica Sinica, 2019, DOI: 10.16383/j.aas.c180549
    [18] 刘颖, 赵珺, 王伟, 吴毅平, 陈伟昌. 基于数据的改进回声状态网络在高炉煤气发生量预测中的应用. 自动化学报, 2009, 35(6): 731−738 doi: 10.3724/SP.J.1004.2009.00731

    Liu Ying, Zhao Jun, Wang Wei, Wu Yi-Ping, Chen Wei-Chang. Improved echo state network based on data-driven and its application to prediction of blast furnace gas output. Acta Automatica Sinica, 2009, 35(6): 731−738 doi: 10.3724/SP.J.1004.2009.00731
    [19] 雷苗, 彭宇, 郭嘉, 彭喜元. 基于先验簇复杂回声状态网络的话务量预测. 仪器仪表学报, 2011, 32(10): 2190−2197

    Lei Miao, Peng Yu, Guo Jia, Peng Xi-Yuan. Traffic forecasting for prior knowledge based clustered complex echo state networks. Chinese Journal of Scientific Instrument, 2011, 32(10): 2190−2197
    [20] 田中大, 李树江, 王艳红, 王向东. 基于混沌理论与改进回声状态网络的网络流量多步预测. 通信学报, 2016, 37(3): 59−74

    Tian Zhong-Da, Li Shu-Jiang, Wang Yan-Hong, Wang Xiang-Dong. Networks traffic mult-step prediction based on chaos theory and improved echo state networks. Journal on Communications, 2016, 37(3): 59−74
    [21] 姚显双, 伦淑娴. 基于回声状态网的光伏发电量预测. 电子设计工程, 2015, 23(22): 92−93, 96 doi: 10.3969/j.issn.1674-6236.2015.22.029

    Yao Xian-Shuang, Lun Shu-Xian. Photovolatic power generation forecasting based on echo state network. Electronic Design Engineering, 2015, 23(22): 92−93, 96 doi: 10.3969/j.issn.1674-6236.2015.22.029
    [22] Yao X S, Wang Z S, Zhang H G. Prediction and identification of discrete-time dynamic nonlinear systems based on adaptive echo state network. Neural Networks, 2019, 113: 11−19 doi: 10.1016/j.neunet.2019.01.003
    [23] Yao X S, Wang Z S, Zhang H G. A novel photovoltaic power forecasting model based on echo state network. Neurocomputing, 2019, 325: 182−189 doi: 10.1016/j.neucom.2018.10.022
    [24] Li Q, Wu Z, Xia X. Estimate and characterize PV power at demand-side hybrid system. Applied Energy, 2018, 218: 66−77 doi: 10.1016/j.apenergy.2018.02.160
    [25] Jaeger H, Lukoševičius M, Popovici D, Siewert U. Optimization and applications of echo state networks with leaky-integrator neurons. Neural Networks, 2007, 20(3): 335−352 doi: 10.1016/j.neunet.2007.04.016
    [26] Kieu P C, Erdal K, Tran D T. A generalized contraction principle in partial metric spaces. Mathematical and Computer Modelling, 2012, 55(5−6): 1673−1681 doi: 10.1016/j.mcm.2011.11.005
    [27] Mu Y S, Liu X D, Wang L D. A Pearson's correlation coefficient based decision tree and its parallel implementation. Information Sciences, 2018, 435: 40−58 doi: 10.1016/j.ins.2017.12.059
    [28] Dhaundiyal A, Atsu D. The effect of wind on the temperature distribution of photovoltaic modules. Solar Energy, 2020, 201: 259−267 doi: 10.1016/j.solener.2020.03.012
    [29] Lun S X, Yao X S, Hu H F. A new echo state network with variable memory length. Information Sciences, 2016, 370–371: 103−119
  • 加载中
图(6) / 表(4)
计量
  • 文章访问数:  1230
  • HTML全文浏览量:  227
  • PDF下载量:  195
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-03-30
  • 录用日期:  2020-07-12
  • 网络出版日期:  2020-12-29
  • 刊出日期:  2020-12-29

目录

    /

    返回文章
    返回