2.845

2023影响因子

(CJCR)

  • 中文核心
  • EI
  • 中国科技核心
  • Scopus
  • CSCD
  • 英国科学文摘

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

用于半监督分类的二阶近似谱图卷积模型

公沛良 艾丽华

公沛良, 艾丽华. 用于半监督分类的二阶近似谱图卷积模型. 自动化学报, 2021, 47(5): 1067−1076 doi: 10.16383/j.aas.c200040
引用本文: 公沛良, 艾丽华. 用于半监督分类的二阶近似谱图卷积模型. 自动化学报, 2021, 47(5): 1067−1076 doi: 10.16383/j.aas.c200040
Gong Pei-Liang, Ai Li-Hua. Two-order approximate spectral convolutional model for semi-supervised classification. Acta Automatica Sinica, 2021, 47(5): 1067−1076 doi: 10.16383/j.aas.c200040
Citation: Gong Pei-Liang, Ai Li-Hua. Two-order approximate spectral convolutional model for semi-supervised classification. Acta Automatica Sinica, 2021, 47(5): 1067−1076 doi: 10.16383/j.aas.c200040

用于半监督分类的二阶近似谱图卷积模型

doi: 10.16383/j.aas.c200040
基金项目: 国家自然科学基金(61472029, 51827813, 61473031)资助
详细信息
    作者简介:

    公沛良:北京交通大学计算机与信息技术学院硕士研究生. 主要研究方向为图数据分析, 数据挖掘, 机器学习和认知计算. E-mail: plgong@bjtu.edu.cn

    艾丽华:博士, 北京交通大学计算机与信息技术学院副教授. 主要研究方向为大型图数据挖掘, 神经网络计算, 机器学习, 并行计算和分布式计算. 本文通信作者.E-mail: lhai@bjtu.edu.cn

Two-order Approximate Spectral Convolutional Model for Semi-Supervised Classification

Funds: Supported by National Natural Science Foundation of China (61472029, 51827813, 61473031)
More Information
    Author Bio:

    GONG Pei-Liang Master student at the School of Computer and Information Technology, Beijing Jiaotong University. His research interest covers graph data analysis, data mining, machine learning, and cognitive computing

    AI Li-Hua  Ph.D., associate professor at the School of Computer and Information Technology, Beijing Jiaotong University. Her research interest covers large-scale graph mining, neural network computing, machine learning, parallel computing, and distributed computing. Corresponding author of this paper

  • 摘要:

    近年来, 基于局部一阶近似的谱图卷积方法在半监督节点分类任务上取得了明显优势, 但是在每次更新节点特征表示时, 只利用了一阶邻居节点信息而忽视了非直接邻居节点信息. 为此, 本文结合切比雪夫截断展开式及标准化的拉普拉斯矩阵, 通过推导及简化二阶近似谱图卷积模块, 提出了一种融合丰富局部结构信息的改进图卷积模型, 进一步提高了节点分类性能. 大量的实验结果表明, 本文提出的方法在不同数据集上的表现均优于现有的流行方法, 验证了模型的有效性.

  • 图  1  本文构造的二阶邻域谱图卷积网络描述图

    Fig.  1  A schematic diagram of our two-order neighborhood spectral convolution network

    图  2  Cora上不同训练集大小(每个类的标记节点数)的准确率

    Fig.  2  Accuracy for different training set sizes (number of labeled nodes per class) on Cora

    图  4  PubMed上不同训练集大小(每个类的标记节点数)的准确率

    Fig.  4  Accuracy for different training set sizes (number of labeled nodes per class) on PubMed

    图  3  CiteSeer上不同训练集大小(每个类的标记节点数)的准确率

    Fig.  3  Accuracy for different training set sizes (number of labeled nodes per class) on CiteSeer

    图  5  目标节点t的一阶及两阶邻域组成的局部网络示意图

    Fig.  5  Schematic diagram of local network composed of the first-order and two-order neighborhoods of target node t

    图  6  在3个数据集上模型隐含层学习到的隐特征表示的t-SNE图

    Fig.  6  A t-SNE plot of the learned hidden feature representations of the model’s hidden layer on the three datasets

    表  1  4个数据集的基本统计信息

    Table  1  Basic statistics information for four datasets

    数据集节点特征类别
    CiteSeer 3327 473237036
    Cora 2708 542914337
    PubMed19717 44338 5003
    NELL657552661445414210
    下载: 导出CSV

    表  2  分类准确率结果汇总(%)

    Table  2  Summary of results in terms of classification accuracy (%)

    算法CiteSeerCoraPubMedNELL
    ManiReg60.159.570.721.8
    SemiEmb59.659.071.126.7
    LP45.368.063.026.5
    DeepWalk43.267.265.358.1
    ICA69.175.173.923.1
    Planetoid64.775.777.261.9
    SpectralCNN58.973.373.9
    Cheby-Net69.881.274.4
    Monet81.778.8
    GCN70.381.579.066.0
    本文算法71.882.679.867.2
    下载: 导出CSV
  • [1] Meng Z Q, Liang S S, Bao H Y, Zhang X L. Co-embedding attributed networks. In: Proceedings of the 12th ACM International Conference on Web Search and Data Mining, New York, NY, USA: ACM, 2019. 393−401
    [2] Kipf T N, Welling M. Semi-supervised classification with graph convolutional networks. In: Proceedings of the 5th International Conference on Learning Representations, Toulon, France: OpenReview, 2017. 1−14
    [3] Liu Z Q, Chen C C, Yang X X, Zhou J, Li X L, Song L. Heterogeneous graph neural networks for malicious account detection. In: Proceedings of the 27th International Conference on Information and Knowledge Management, New York, NY, USA: ACM, 2018. 2077−2085
    [4] Zhu X J, Ghahramani Z, Lafferty J D. Semi-supervised learning using Gaussian fields and harmonic functions. In: Proceedings of the 20th International Conference on Machine Learning, Menlo Park, CA, USA: AAAI, 2003. 912−919
    [5] Talukdar P P, Crammer K. New regularized algorithms for transductive learning. In: Proceedings of the 2009 European Conference on Machine Learning and Principles and Practice of Knowledge Discovery in Databases, Berlin, Germany: Springer, 2009. 442−457
    [6] Belkin M, Niyogi P, Sindhwani V. Manifold regularization: A geometric framework for learning from labeled and unlabeled examples. Journal of Machine Learning Research, 2006, 7(11): 2399−2434
    [7] Weston J, Frédéric R, Collobert R. Deep learning via semi-supervised embedding. In: Proceedings of the 25th International Conference on Machine Learning, Berlin, Germany: Springer, 2012. 639−655
    [8] Lu Q, Getoor L. Link-based classification. In: Proceedings of the 20th International Conference on Machine Learning, Menlo Park, CA, USA: AAAI, 2003. 496−503
    [9] Perozzi B, Al-Rfou R, Skiena S. Deepwalk: Online learning of social representations. In: Proceedings of the 20th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, New York, NY, USA: ACM, 2014. 701−710
    [10] Tang J, Qu M, Wang M Z, Zhang M, Yan J, Mei Q Z. Line: Large-scale information network embedding. In: Proceedings of the 24th International Conference on World Wide Wed, New York, NY, USA: ACM, 2015. 1067−1077
    [11] Grover A, Leskovec J. Node2vec: Scalable feature learning for networks. In: Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, New York, NY, USA: ACM, 2016. 855−864
    [12] Yang Z L, Cohen W W, Salakhutdinov R. Revisiting semi-supervised learning with graph embeddings. In: Proceedings of the 33rd International Conference on Machine Learning, Cambridge, MA, USA: MIT Press, 2016. 40−48
    [13] Mikolov T, Sutskever I, Chen K, Corrado G S, Dean J. Distributed representations of words and phrases and their compositionality. In: Proceedings of the 27th Annual Conference on Neural Information Processing Systems, New York, NY, USA: Curran Associates, 2013. 3111−3119
    [14] Sun K, Xiao B, Liu D, Wang J D. Deep high-resolution representation learning for human pose estimation. In: Proceedings of the 2019 IEEE Conference on Computer Vision and Pattern Recognition, New York, USA: IEEE, 2019. 5693−5703
    [15] Zhang Y, Pezeshki M, Brakel P, Zhang S Z, Laurent C, Bengio Y, et al. Towards end-to end speech recognition with deep convolutional neural networks. In: Proceedings of the 17th Annual Conference of the International Speech Communication Association, New York, USA: Elsevier 2016. 410−414
    [16] Niepert M, Ahmed M, Kutzkov K. Learning convolutional neural networks for graphs. In: Proceedings of the 33rd International Conference on Machine Learning, Cambridge, MA, USA: MIT Press, 2016. 2014−2023
    [17] Velickovic P, Cucurull G, Casanova A, Romero A, Liò P, Bengio Y. Graph attention networks. In: Proceedings of the 6th International Conference on Learning Representations, Vancouver, BC, Canada: OpenReview, 2018. 1−12
    [18] Gao H Y, Wang Z Y, Ji S W. Large-scale learnable graph convolutional networks. In: Proceedings of the 24th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, New York, NY, USA: ACM, 2018. 1416−1424
    [19] Hamilton W L, Ying Z T, Leskovec J. Inductive representation learning on large graphs. In: Proceedings of the 31st Annual Conference on Neural Information Processing Systems, New York, NY, USA: Curran Associates, 2017. 1024−1034
    [20] Bruna J, Zaremba W, Szlam A, Lecun Y. Spectral networks and locally connected networks on graphs. In: Proceedngs of the 2nd International Conference on Learning Representations, Banff, AB, Canada: OpenReview, 2014. 1−14
    [21] Defferrard M, Bresson X, Vandergheynst P. Convolutional neural networks on graphs with fast localized spectral filtering. In: Proceedings of the 29th Annual Conference on Neural Information Processing Systems, New York, NY, USA: Curran Associates, 2016. 3844−3852
    [22] Hammond D K, Vandergheynst P, Rémi G. Wavelets on graphs via spectral graph theory. Applied and Computational Harmonic Analysis, 2012, 30(2): 129−150
    [23] Li Q M, Han Z C, Wu X M. Deeper insights into graph convolutional networks for semi-supervised learning. In: Proceedings of the 32nd AAAI Conference on Artificial Intelligence, Menlo Park, CA, USA: AAAI, 2018. 3538−3545
    [24] Shuman D I, Narang S K, Frossard P, Ortega A, Vandergheynst P. The emerging field of signal processing on graphs: Extending high-dimensional data analysis to networks and other irregular domains. IEEE Signal Processing Magazine, 2013, 30(3): 83−98 doi: 10.1109/MSP.2012.2235192
    [25] Giles C L, Bollacker K, Lawrence S. Citeseer: An automatic citation indexing system. In: Proceedings of the 3rd ACM International Conference on Digital Libraries, New York, NY, USA: ACM, 1998. 89−98
    [26] McCallum A, Nigam K, Rennie J, Seymore K. Automating the construction of internet portals with machine learning. Information Retrieval, 2000, 3(2): 127−163 doi: 10.1023/A:1009953814988
    [27] Namata G, London B, Getoor L, Huang B. Query-driven active surveying for collective classification. In: Proceedings of the 10th workshop on Mining and Learning with Graphs, Edinburgh, Scotland: ACM, 2012. 1−8
    [28] Andrew C, Justin B, Bryan K, Burr S, Estevam R H J, Tom M M. Toward an architecture for never-ending language learning. In: Proceedings of the 24th AAAI Conference on Artificial Intelligence, Menlo Park, CA, USA: AAAI, 2010. 1306−1313
    [29] Glorot X, Bengio Y. Understanding the difficulty of training deep feedforward neural networks. In: Proceedings of the 13th International Conference on Artificial Intelligence and Statistics, Cambridge, MA, USA: MIT Press, 2010. 249−256
    [30] Kingma D P, Ba J. Adam: A method for stochastic optimization. In: Proceedings of the 3rd International Conference on Learning Representations, San Diego, CA, USA: OpenReview, 2015. 1−15
    [31] Srivastava N, Hinton G, Krizhevsky A, Sutskever I, Salakhutdinov R. Dropout: A simple way to prevent neural networks from overfitting. Journal of Machine Learning Research, 2014, 15(1): 1929−1958
    [32] Monti F, Boscaini D, Masci J, Rodola E, Svoboda J, Bronstein M M. Geometric deep learning on graphs and manifolds using mixture model CNNs. In: Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition, New York, USA: IEEE, 2017. 5425−5434
    [33] Van der Maaten L, Hinton G. Visualizing data using t-SNE. Journal of Machine Learning Research, 2008, 9(11): 2579−2605
  • 加载中
图(6) / 表(2)
计量
  • 文章访问数:  824
  • HTML全文浏览量:  189
  • PDF下载量:  179
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-01-19
  • 录用日期:  2020-04-16
  • 网络出版日期:  2021-05-21
  • 刊出日期:  2021-05-20

目录

    /

    返回文章
    返回