2.845

2023影响因子

(CJCR)

  • 中文核心
  • EI
  • 中国科技核心
  • Scopus
  • CSCD
  • 英国科学文摘

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

满足不同交互任务的人机共融系统设计

禹鑫燚 王正安 吴加鑫 欧林林

禹鑫燚, 王正安, 吴加鑫, 欧林林. 满足不同交互任务的人机共融系统设计. 自动化学报, 2022, 48(9): 2265−2276 doi: 10.16383/j.aas.c190753
引用本文: 禹鑫燚, 王正安, 吴加鑫, 欧林林. 满足不同交互任务的人机共融系统设计. 自动化学报, 2022, 48(9): 2265−2276 doi: 10.16383/j.aas.c190753
Yu Xin-Yi, Wang Zheng-An, Wu Jia-Xin, Ou Lin-Lin. System design for human-robot coexisting environment satisfying multiple interaction tasks. Acta Automatica Sinica, 2022, 48(9): 2265−2276 doi: 10.16383/j.aas.c190753
Citation: Yu Xin-Yi, Wang Zheng-An, Wu Jia-Xin, Ou Lin-Lin. System design for human-robot coexisting environment satisfying multiple interaction tasks. Acta Automatica Sinica, 2022, 48(9): 2265−2276 doi: 10.16383/j.aas.c190753

满足不同交互任务的人机共融系统设计

doi: 10.16383/j.aas.c190753
基金项目: 国家重点研究发展计划(2018YFB1308400)和浙江省自然科学基金(LY21F030018)资助
详细信息
    作者简介:

    禹鑫燚:浙江工业大学信息工程学院副教授. 主要研究方向为运动控制和智能机器人. E-mail: yuxy@zjut.edu.cn

    王正安:浙江工业大学信息工程学院硕士研究生. 主要研究方向为人体姿态识别和人机协作. E-mail: zhenan_wang@163.com

    吴加鑫:浙江工业大学信息工程学院硕士研究生. 主要研究方向为机器人动力学与机器人控制. E-mail: m17306424998@gmail.com

    欧林林:浙江工业大学信息工程学院教授. 主要研究方向为智能学习, 机器人系统和多智能体系统协同控制. 本文通信作者.E-mail: linlinou@zjut.edu.cn

System Design for Human-robot Coexisting Environment Satisfying Multiple Interaction Tasks

Funds: Supported by National Key Research and Development Program (2018YFB1308400) and Natural Science Foundation of Zhejiang Province (LY21F030018)
More Information
    Author Bio:

    YU Xin-Yi Associate professor at the College of Information Engineering, Zhejiang University of Technology. His research interest covers motion control and intelligent robot

    WANG Zheng-An Master student at the College of Information Engineering, Zhejiang University of Technology. His research interest covers human pose estimation and human-robot collaboration

    WU Jia-Xin Master student at the College of Information Engineering, Zhejiang University of Technology. His research interest covers robot dynamics and robot motion control

    OU Lin-Lin Professor at the College of Information Engineering, Zhejiang University of Technology. Her research interest covers intelligent learning, robot system and multi-agent system control. Corresponding author of this paper

  • 摘要: 人与机器人共同协作的灵活生产模式已经成为工业成产的迫切需求, 因此, 近年来人机共融系统方面的研究受到了越来越多关注. 设计并实现了一种满足不同交互任务的人机共融系统, 人体动作的估计和机器人的交互控制是其中的关键技术. 首先, 提出了一种基于多相机和惯性测量单元信息融合的人体姿态解算方法, 通过构造优化问题, 融合多相机下的2D关节检测信息和所佩戴的惯性测量单元测量信息, 对人体运动学姿态进行优化估计, 改善了单一传感器下, 姿态信息不全面以及对噪声敏感的问题, 提升了姿态估计的准确度. 其次, 结合机器人的运动学特性和人机交互的特点, 设计了基于目标点跟踪和模型预测控制的机器人控制策略, 使得机器人能够通过调整控制参数, 适应动态的环境和不同的交互需求, 同时保证机器人和操作人员的安全. 最后, 进行了动作跟随、物品传递、主动避障等人机交互实验, 实验结果表明了所设计的机器人交互系统在人机共融环境下的有效性和可靠性.
  • 图  1  人机交互方式

    Fig.  1  Patterns of human-robot interaction

    图  2  人机共融系统示意图

    Fig.  2  Overview of human-robot coexisting system

    图  3  机器人动作解算结果

    Fig.  3  Robot pose estimation result

    图  4  人体上肢骨骼关节点

    Fig.  4  Key points of human upper limb skeleton

    图  5  机器人运动边界

    Fig.  5  Boundary of robot motion

    图  6  基于单关节模型的预测控制器

    Fig.  6  Model predictive controller based on single robot joint

    图  7  不同传感器配置下的姿态估计结果

    Fig.  7  Pose estimation result under different sensor configuration cases

    图  8  基于参数组1的机器人各关节目标跟踪轨迹

    Fig.  8  Robot joint tracking result based on parameter 1

    图  9  基于参数组2的机器人各关节目标跟踪轨迹

    Fig.  9  Robot joint tracking result based on parameter 2

    图  10  机器人遥操作搬运

    Fig.  10  Robot pick-and-place under teleoperation

    图  11  指定物品递送

    Fig.  11  Target pointing and fetching

    图  12  机器人主动避障

    Fig.  12  Active collision avoidance

    表  1  不同传感器配置下的人体姿态估计准确率

    Table  1  Accuracy of human pose estimation under different sensor configurations

    传感器配置准确率 (%)
    2 台相机91.4
    3 台相机98.1
    3 台相机 + IMU98.7
    下载: 导出CSV
  • [1] Halme R J, Lanz M, Kämäräinen J, Pieters R, Latokartano J, Hietanen A. Review of vision-based safety systems for human-robot collaboration. Procedia Cirp, 2018, 72: 111-116. doi: 10.1016/j.procir.2018.03.043
    [2] Rosenstrauch M J, Kruger J. Safe human-robot-collaboration-introduction and experiment using ISO/TS 15066. In: Proceeding of the 2017 3rd International Conference on Control, Automation and Robotics (ICCAR). Nagoya, Japan: 2017. 740−744
    [3] Marvel J A, Norcross R. Implementing speed and separation monitoring in collaborative robot workcells. Robotics Computer Integrated Manufacturing, 2017, 44: 144-155 doi: 10.1016/j.rcim.2016.08.001
    [4] Bdiwi M, Pfeifer M, Sterzing A. A new strategy for ensuring human safety during various levels of interaction with industrial robots. CIRP Annals−Manufacturing Technology, 2017: 66(1), 453−456
    [5] Bdiwi M. Integrated sensors system for human safety during cooperating with industrial robots for handing-over and assembling tasks. Procedia Cirp, 2014, 23: 65-70 doi: 10.1016/j.procir.2014.10.099
    [6] Rakprayoon P, Ruchanurucks M, Coundoul A. Kinect-based obstacle detection for manipulator. In: Proceedings of the IEEE/SICE International Symposium on System Integration. Kyoto, Japan: 2011. 68−73
    [7] Windolf M, Götzen N, Morlock M. Systematic accuracy and precision analysis of video motion capturing systems-exemplified on the Vicon-460 system. Journal of Biomechanics, 2008, 41(12): 2776-2780 doi: 10.1016/j.jbiomech.2008.06.024
    [8] Von Marcard T, Rosenhahn B, Black M J, Pons-Moll G. Sparse inertial poser: automatic 3D human pose estimation from sparse IMUs. Computer Graphics Forum, 2017, 36(2): 349-360 doi: 10.1111/cgf.13131
    [9] 张鋆豪, 何百岳, 杨旭升, 张文安. 基于可穿戴式惯性传感器的人体运动跟踪方法综述. 自动化学报, 2019, 45(8): 1439-1454

    Zhang Jun-Hao, He Bai-Yue, Yang Xu-Sheng, Zhang Wen-An. A Review on Wearable Inertial Sensor Based Human Motion Tracking. ACTA AUTOMATICA SINICA, 2019, 45(8): 1439-1454
    [10] Cao Z, Simon T, Wei SE, Sheikh Y. Realtime multi-person 2D pose estimation using part affinity fields. In: Proceedings of the IEEE Conference on Computer Vision & Pattern Recognition. Honolulu, USA: 2017. 1302-1310
    [11] Mehta D, Sridhar S, Sotnychenko O, Rhodin H, Shafiei M, Seidel HP, Xu W, Dan C, Theobalt C. VNect: real-time 3D human pose estimation with a single RGB camera. Acm Transactions on Graphics, 2017, 36(4): 44
    [12] Shotton J, Girshick R, Fitzgibbon A, Sharp T, Cook M, Finocchio M, Moore R, Kohli P, Criminisi A, Kipman A. Efficient human pose estimation from single depth images. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2013, 35(12): 2821-2840 doi: 10.1109/TPAMI.2012.241
    [13] 贾丙西, 刘山, 张凯祥, 陈剑. 机器人视觉伺服研究进展: 视觉系统与控制策略. 自动化学报, 2015, 41(5): 861-873

    Jia Bing-Xi, Liu Shan, Zhang Kai-Xiang, Chen Jian. Survey on Robot Visual Servo Control: Vision System and Control Strategies. ACTA AUTOMATICA SINICA, 2015, 41(5): 861-873
    [14] Flacco F, Kroeger T, De Luca A, Khatib O. A depth space approach for evaluating distance to objects. Journal of Intelligent Robotic Systems, 2015, 80(1): 7-22
    [15] Tsai C S, Hu J S, Tomizuka M. Ensuring safety in human-robot coexistence environment. In: Proceedings of the IEEE/RSJ International Conference on Intelligent Robots & Systems. Chicago, USA: IEEE. 2014. 4191−4196
    [16] Mohammed A, Schmidt B, Wang L. Active collision avoidance for human-robot collaboration driven by vision sensors. International Journal of Computer Integrated Manufacturing, 2016:1-11.
    [17] Trumble M, Gilbert A, Malleson C, Hilton A, Collomosse J. Total Capture: 3D human pose estimation fusing video and inertial sensors. In: Proceedings of the British Machine Vision Conference. London, UK: 2017. 1−13
  • 加载中
图(12) / 表(1)
计量
  • 文章访问数:  788
  • HTML全文浏览量:  198
  • PDF下载量:  234
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-10-30
  • 录用日期:  2020-02-16
  • 网络出版日期:  2022-09-07
  • 刊出日期:  2022-09-16

目录

    /

    返回文章
    返回