2.845

2023影响因子

(CJCR)

  • 中文核心
  • EI
  • 中国科技核心
  • Scopus
  • CSCD
  • 英国科学文摘

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

证据推理理论及其应用

周志杰 唐帅文 胡昌华 曹友 王杰

周志杰, 唐帅文, 胡昌华, 曹友, 王杰. 证据推理理论及其应用. 自动化学报, 2021, 47(5): 970−984 doi: 10.16383/j.aas.c190676
引用本文: 周志杰, 唐帅文, 胡昌华, 曹友, 王杰. 证据推理理论及其应用. 自动化学报, 2021, 47(5): 970−984 doi: 10.16383/j.aas.c190676
Zhou Zhi-Jie, Tang Shuai-Wen, Hu Chang-Hua, Cao You, Wang Jie. Evidential reasoning theory and its applications. Acta Automatica Sinica, 2021, 47(5): 970−984 doi: 10.16383/j.aas.c190676
Citation: Zhou Zhi-Jie, Tang Shuai-Wen, Hu Chang-Hua, Cao You, Wang Jie. Evidential reasoning theory and its applications. Acta Automatica Sinica, 2021, 47(5): 970−984 doi: 10.16383/j.aas.c190676

证据推理理论及其应用

doi: 10.16383/j.aas.c190676
基金项目: 国家自然科学基金(61773388, 61751304, 61833016, 61702142), 海南省重点研发计划(ZDYF2019007)资助
详细信息
    作者简介:

    周志杰:火箭军工程大学教授. 2010年获得清华大学博士学位. 主要研究方向为证据推理, 置信规则库, 故障诊断, 安全性评估.E-mail: zhouzj04@tsinghua.org.cn

    唐帅文:火箭军工程大学博士研究生. 2017年获得火箭军工程大学学士学位. 主要研究方向为证据推理, 故障诊断, 安全性评估.E-mail: tsw631845201@163.com

    胡昌华:火箭军工程大学教授, 长江学者. 1996年获得西北工业大学博士学位. 主要研究方向为故障诊断, 寿命预测. 本文通信作者.E-mail: hch66603@163.com

    曹友:火箭军工程大学博士研究生. 2017年获得哈尔滨理工大学学士学位. 主要研究方向为证据推理, 置信规则库, 安全性评估.E-mail: cy936756268@163.com

    王杰:火箭军工程大学博士研究生. 2018年获得合肥工业大学学士学位. 主要研究方向为证据推理, 故障诊断, 安全性评估.E-mail: wj2802877478@163.com

Evidential Reasoning Theory and Its Applications

Funds: Supported by National Natural Science Foundation of China (61773388, 61751304, 61833016, 61702142) and Key Research and Development Plan of Hainan Province (ZDYF2019007)
More Information
    Author Bio:

    ZHOU Zhi-Jie Professor at Rocket Force University of Engineering. He received his Ph.D. degree from Tsinghua University in 2010. His research interest covers evidential reasoning, belief rule base, fault diagnosis, and safety assessment

    TANG Shuai-Wen Ph.D. candidate at Rocket Force University of Engineering. He received his bachelor degree from Rocket Force University of Engineering in 2017. His research interest covers evidential reasoning, fault diagnosis, and safety assessment

    HU Chang-Hua Professor at Rocket Force University of Engineering, Cheung Kong Scholar. He received his Ph.D. degree from Northwestern Polytechnical University in 1996. His research interest covers fault diagnosis and life prediction. Corresponding author of this paper

    CAO You Ph.D. candidate at Rocket Force University of Engineering. He received his bachelor degree from Harbin University of Science and Technology in 2017. His research interest covers evidential reasoning, belief rule base, and safety assessment

    WANG Jie Ph.D. candidate at Rocket Force University of Engineering. He received his bachelor degree from Hefei University of Technology in 2018. His research interest covers evidential reasoning, fault diagnosis, and safety assessment

  • 摘要:

    证据理论既能够灵活处理不确定信息, 包括随机性、模糊性、不准确性和不一致性, 又能够有效融合定量信息和定性知识. 目前, 证据理论已广泛应用于评估与决策等多个领域中, 包括多属性决策分析、信息融合、模式识别和专家系统等. 本文从D-S证据理论出发, 针对Dempster组合规则存在的“反直觉”问题和组合爆炸, 主要围绕置信分布理论系统地梳理了证据理论的发展过程, 总结分析了国内外典型文献, 最后从实际应用对证据理论进行了简要的评述和展望.

  • 图  1  论文的整体框架

    Fig.  1  The overall framework of this paper

    表  1  证据的基本概率分配

    Table  1  Basic probability assignment of evidence

    基本概率质量 犯罪嫌疑人
    Peter Paul Mary
    ${m_1}$ 0.99 0.01 0
    ${m_2}$ 0 0.01 0.99
    下载: 导出CSV

    表  2  证据的置信分布

    Table  2  Belief distribution of evidence

    证据 命题
    $A$ $B$
    ${e_1}$ 0.8 0.2
    ${e_2}$ 0.4 0.6
    下载: 导出CSV

    表  3  证据组合结果的比较

    Table  3  Comparison of evidence combination results

    组合规则 概率质量 $\emptyset $ $A$ $B$ $\Theta$ $P(\Theta )$
    Dempster 组合规则 ${m_1}$ 0 0.1600 0.0400 0.8000 0
    ${m_2}$ 0 0.3200 0.4800 0.2000 0
    $\displaystyle\sum\nolimits_{C \cap D = \theta } \displaystyle{ {m_1}(C){m_2}(D)}$ 0.0896 0.3392 0.4112 0.1600 0
    $m$ 0 0.3726 0.4517 0.1757 0
    原始 ER 算法 ${m_1}$ 0 0.1600 0.0400 0 0.8000
    ${m_2}$ 0 0.3200 0.4800 0 0.2000
    ${m_{\theta ,e(2)}}$ 0 0.3726 0.4517 0 0.1757
    ${p_{\theta ,e(2)}}$ 0 0.4520 0.5480 0 0
    ER 规则 ${\widetilde m_1}$ 0 0.4000 0.1000 0 0.5000
    ${\widetilde m_2}$ 0 0.2909 0.4364 0 0.2727
    ${\widehat m_{\theta ,e(2)}}$ 0 0.1632 0.1272 0 0.0600
    ${m_{\theta ,e(2)}}$ 0 0.4658 0.3630 0 0.1712
    ${p_{\theta ,e(2)}}$ 0 0.5620 0.4380 0 0
    下载: 导出CSV
  • [1] Dempster A P. Upper and lower probabilities induced by a multivalued mapping. Annals of Mathematical Statistics, 1967, 38(2): 325−339 doi: 10.1214/aoms/1177698950
    [2] Dempster A P. A generalization of Bayesian inference. Journal of the Royal Statistical Society. Series B (Methodological), 1968, 30(2): 205−247 doi: 10.1111/j.2517-6161.1968.tb00722.x
    [3] Shafer G. A Mathematical Theory of Evidence. London: Princeton University Press, 1976.
    [4] Yang J B, Sen P. A general multi-level evaluation process for hybrid MADM with uncertainty. IEEE Transactions on Systems, Man, and Cybernetics, 1994, 24(10): 1458−1473 doi: 10.1109/21.310529
    [5] Yang J B, Singh M G. An evidential reasoning approach for multiple-attribute decision making with uncertainty. IEEE Transactions on Systems, Man, and Cybernetics, 1994, 24(1): 1−18 doi: 10.1109/21.259681
    [6] Pal N R, Bezdek J C, Hemasinha R. Uncertainty measures for evidential reasoning I: A review. International Journal of Approximate Reasoning, 1992, 7(3−4): 165−183 doi: 10.1016/0888-613X(92)90009-O
    [7] 康耀红. 数据融合理论与应用. 西安: 西安电子科技大学出版社, 1997.

    Kang Yao-Hong. Theory and Application of Data Fusion. Xi' an: Xidian University Press, 1997.
    [8] Zadeh L A. On the Validity of Dempster′s Rule of Combination of Evidence. ERL Memo M79/24, University of California, USA, 1979.
    [9] Gordon J, Shortliffe E H. A method for managing evidential reasoning in a hierarchical hypothesis space. Artificial Intelligence, 1985, 26(3): 323−357 doi: 10.1016/0004-3702(85)90064-5
    [10] Jiang W. A correlation coefficient for belief functions. International Journal of Approximate Reasoning, 2018, 103: 94−106 doi: 10.1016/j.ijar.2018.09.001
    [11] Yang J B, Xu D L. Evidential reasoning rule for evidence combination. Artificial Intelligence, 2013, 205: 1−29 doi: 10.1016/j.artint.2013.09.003
    [12] Smets P. The degree of belief in a fuzzy event. Information Sciences, 1981, 25(1): 1−19 doi: 10.1016/0020-0255(81)90008-6
    [13] Smets P, Kennes R. The transferable belief model. Artificial Intelligence, 1994, 66(2): 191−234 doi: 10.1016/0004-3702(94)90026-4
    [14] Pawlak Z. Rough sets. International Journal of Computer and Information Sciences, 1982, 11(5): 341−356
    [15] Voorbraak F. A computationally efficient approximation of Dempster-Shafer theory. International Journal of Man-Machine Studies, 1988, 30(5): 525−536
    [16] Cobb B R, Shenoy P P. A comparison of Bayesian and belief function reasoning. Information Systems Frontiers, 2003, 5(4): 345−358 doi: 10.1023/B:ISFI.0000005650.63806.03
    [17] Yang J B. Rule and utility based evidential reasoning approach for multiattribute decision analysis under uncertainties. European Journal of Operational Research, 2001, 131(1): 31−61 doi: 10.1016/S0377-2217(99)00441-5
    [18] Liu J, Yang J B, Wang J, Sii H S. Engineering system safety analysis and synthesis using the fuzzy rule-based evidential reasoning approach. Quality and Reliability Engineering International, 2005, 21(4): 387−411 doi: 10.1002/qre.668
    [19] Wang Y M, Yang J B, Xu D L. Environmental impact assessment using the evidential reasoning approach. European Journal of Operational Research, 2006, 174(3): 1885−1913 doi: 10.1016/j.ejor.2004.09.059
    [20] Xu D L, Yang J B, Wang Y M. The evidential reasoning approach for multi-attribute decision analysis under interval uncertainty. European Journal of Operational Research, 2006, 174(3): 1914−1943
    [21] Gao B, Ni M F. A note on article “The evidential reasoning approach for multiple attribute decision analysis using interval belief degrees”. European Journal of Operational Research, 2009, 197(2): 809−812 doi: 10.1016/j.ejor.2007.10.038
    [22] Denœux T, Zouhal L M. Handling possibilistic labels in pattern classification using evidential reasoning. Fuzzy Sets and Systems, 2001, 122(3): 409−424 doi: 10.1016/S0165-0114(00)00086-5
    [23] 刘准钆, 潘泉, Dezert J, 周旷, 焦连猛. 不确定数据信任分类与融合. 北京: 科学出版社, 2016.

    Liu Zhun-Ga, Pan Quan, Dezert J, Zhou Kuang, Jiao Lian-Meng. Classification and Fusion of Uncertain Data Trust. Beijing: Science Press, 2016.
    [24] Florea M C, Jousselme A L, Bossé É, Grenier D. Robust combination rules for evidence theory. Information Fusion, 2009, 10(2): 183−197 doi: 10.1016/j.inffus.2008.08.007
    [25] Smets P. Analyzing the combination of conflicting belief functions. Information Fusion, 2007, 8(4): 387−412 doi: 10.1016/j.inffus.2006.04.003
    [26] Barnett J A. Computational methods for a mathematical theory of evidence. In: Proceedings of the 7th International Joint Conference on Artificial Intelligence. Vancouver, Canada: William Kaufmann, 1981. 868−875
    [27] Yang J B, Liu J, Wang J, Sii H S, Wang H W. Belief rule-base inference methodology using the evidential reasoning approach-RIMER. IEEE Transactions on Systems, Man, and Cybernetics- Part A: Systems and Humans, 2006, 36(2): 266−285 doi: 10.1109/TSMCA.2005.851270
    [28] 周志杰, 陈玉旺, 胡昌华, 张邦成, 常雷雷. 证据推理、置信规则库与复杂系统建模. 北京: 科学出版社, 2017.

    Zhou Zhi-Jie, Chen Yu-Wang, Hu Chang-Hua, Zhang Bang-Cheng, Chang Lei-Lei. Evidential Reasoning, Belief Rule Base and Complex System Modeling. Beijing: Science Press, 2017.
    [29] 徐晓滨, 文成林, 孙新亚, 吉吟东. 设备故障诊断中的证据融合与决策方法. 北京: 科学出版社, 2017.

    Xu Xiao-Bin, Wen Cheng-Lin, Sun Xin-Ya, Ji Yin-Dong. Evidence Fusion and Decision-making Methods in Equipment Fault Diagnosis. Beijing: Science Press, 2017.
    [30] Yang J B, Xu D L. On the evidential reasoning algorithm for multiple attribute decision analysis under uncertainty. IEEE Transactions on Systems, Man, and Cybernetics — Part A: Systems and Humans, 2002, 32(3): 289−304 doi: 10.1109/TSMCA.2002.802746
    [31] Yang J B, Wang Y M, Xu D L, Chin K S. The evidential reasoning approach for MADA under both probabilistic and fuzzy uncertainties. European Journal of Operational Research, 2006, 171(1): 309−343 doi: 10.1016/j.ejor.2004.09.017
    [32] Guo M, Yang J B, Chin K S, Wang H W. Evidential reasoning based preference programming for multiple attribute decision analysis under uncertainty. European Journal of Operational Research, 2007, 182(3): 1294−1312 doi: 10.1016/j.ejor.2006.09.064
    [33] Zhou Z J, Chang L L, Hu C H, Han X X, Zhou Z G. A new BRB-ER-based model for assessing the lives of products using both failure data and expert knowledge. IEEE Transactions on Systems, Man, and Cybernetics: Systems, 2016, 46(11): 1529−1543 doi: 10.1109/TSMC.2015.2504047
    [34] 胡冠宇. 基于置信规则库的网络安全态势感知技术研究[博士学位论文], 哈尔滨理工大学, 中国, 2016.

    Hu Guan-Yu. Study on Network Security Situation Awareness Based on Belief Rule Base [Ph.D. dissertation], Harbin University of Science and Technology, China, 2016.
    [35] Huber R. Scene classification of SAR images acquired from antiparallel tracks using evidential and rule-based fusion. Image and Vision Computing, 2001, 19(13): 1001−1010 doi: 10.1016/S0262-8856(01)00062-2
    [36] Wang Y M, Elhag T M S. A comparison of neural network, evidential reasoning and multiple regression analysis in modelling bridge risks. Expert Systems with Applications, 2007, 32(2): 336−348 doi: 10.1016/j.eswa.2005.11.029
    [37] Bazargan-Lari R M. An evidential reasoning approach to optimal monitoring of drinking water distribution systems for detecting deliberate contamination events. Journal of Cleaner Production, 2014, 78: 1−14 doi: 10.1016/j.jclepro.2014.04.061
    [38] Durbach I N, Stewart T J. Modeling uncertainty in multi-criteria decision analysis. European Journal of Operational Research, 2012, 223(1): 1−14 doi: 10.1016/j.ejor.2012.04.038
    [39] 周志杰, 杨剑波, 胡昌华, 徐冬玲. 置信规则库专家系统与复杂系统建模. 北京: 科学出版社, 2011.

    Zhou Zhi-Jie, Yang Jian-Bo, Hu Chang-Hua, Xu Dong-Ling. Belief Rule Base Expert System and Complex System Modeling. Beijing: Science Press, 2011.
    [40] Bustince H, Burillo P. Mathematical analysis of interval-valued fuzzy relations: Application to approximate reasoning. Fuzzy Sets and Systems, 2000, 113(2): 205−219 doi: 10.1016/S0165-0114(98)00020-7
    [41] Chen S M, Hsiao W H. Bidirectional approximate reasoning for rule-based systems using interval-valued fuzzy sets. Fuzzy Sets and Systems, 2000, 113(2): 185−203 doi: 10.1016/S0165-0114(98)00351-0
    [42] Haenni R. Shedding new light on Zadeh′s criticism of Dempster′s rule of combination. In: Proceedings of the 7th International Conference on Information Fusion. Philadelphia, SUA: IEEE, 2005.
    [43] Huynh V N, Nakamori Y, Ho T B, Murai T. Multiple-attribute decision making under uncertainty: The evidential reasoning approach revisited. IEEE Transactions on Systems, Man, and Cybernetics — Part A: Systems and Humans, 2006, 36(4): 804−822 doi: 10.1109/TSMCA.2005.855778
    [44] 胡昌华, 司小胜, 周志杰, 王鹏. 新的证据冲突衡量标准下的D-S改进算法. 电子学报, 2009, 37(7): 1578−1583 doi: 10.3321/j.issn:0372-2112.2009.07.032

    Hu Chang-Hua, Si Xiao-Sheng, Zhou Zhi-Jie, Wang Peng. An improved D-S algorithm under the new measure criteria of evidence conflict. Acta Electronica Sinica, 2009, 37(7): 1578−1583 doi: 10.3321/j.issn:0372-2112.2009.07.032
    [45] 韩德强, 韩崇昭, 邓勇, 杨艺. 基于证据方差的加权证据组合. 电子学报, 2011, 39(3A): 153−157

    Han De-Qiang, Han Chong-Zhao, Deng Yong, Yang Yi. Weighted combination of conflicting evidence based on evidence variance. Acta Electronica Sinica, 2011, 39(3A): 153−157
    [46] Yager R R. On the Dempster-Shafer framework and new combination rules. Information Sciences, 1987, 41(2): 93−137 doi: 10.1016/0020-0255(87)90007-7
    [47] Dubois D, Prade H. Representation and combination of uncertainty with belief functions and possibility measures. Computational Intelligence, 1988, 4(3): 244−264 doi: 10.1111/j.1467-8640.1988.tb00279.x
    [48] Smarandache F, Dezert J. Proportional conflict redistribution rules for information fusion. Advances and Applications of DSmT for Information Fusion (Collected Works). Rehoboth: American Research Press, 2006. 3−68
    [49] Simard M A, Couture J, Bosse E. Data fusion of multiple-sensors attribute information for target-identity estimation using a Dempster-Shafer evidential combination algorithm. In: Proceedings of the SPIE 2759, Signal and Data Processing of Small Targets 1996. Orlando, USA: SPIE, 1996. 577−588
    [50] Lefevre E, Colot O, Vannoorenberghe P. Belief function combination and conflict management. Information Fusion, 2002, 3(2): 149−162 doi: 10.1016/S1566-2535(02)00053-2
    [51] Chen T L, Que P W. Target recognition based on modified combination rule. Journal of Systems Engineering and Electronics, 2006, 17(2): 279−283 doi: 10.1016/S1004-4132(06)60048-0
    [52] Jiang W, Zhan J. A modified combination rule in generalized evidence theory. Applied Intelligence, 2017, 46(3): 630−640 doi: 10.1007/s10489-016-0851-6
    [53] Chen Y, Chen Y W, Xu X B, Pan C C, Yang J B, Yang G K. A data-driven approximate causal inference model using the evidential reasoning rule. Knowledge-Based Systems, 2015, 88: 264−272 doi: 10.1016/j.knosys.2015.07.026
    [54] Keeney R L, Raiffa H. Decisions with Multiple Objectives: Preferences and Value Tradeoffs. New York: Cambridge University Press, 1993.
    [55] Deng H P, Yeh C H, Willis R J. Inter-company comparison using modified TOPSIS with objective weights. Computers and Operations Research, 2000, 27(10): 963−973
    [56] Diakoulaki D, Mavrotas G, Papayannakis L. Determining objective weights in multiple criteria problems: The CRITIC method. Computers and Operations Research, 1995, 22(7): 763−770
    [57] Yeh C H, Willis R J, Deng H P, Pan H Q. Task oriented weighting in multi-criteria analysis. European Journal of Operational Research, 1999, 119(1): 130−146 doi: 10.1016/S0377-2217(98)90353-8
    [58] Deng M R, Xu W X, Yang J B. Estimating the attribute weights through evidential reasoning and mathematical programming. International Journal of Information Technology & Decision Making, 2004, 3(3): 419−428
    [59] Zadeh L A. Fuzzy sets. Information and Control, 1965, 8(3): 338−353 doi: 10.1016/S0019-9958(65)90241-X
    [60] Ishizuka M, Fu K S, Yao J T P. Inference procedures under uncertainty for the problem-reduction method. Information Sciences, 1982, 28(3): 179−206 doi: 10.1016/0020-0255(82)90047-0
    [61] 周谧. 基于证据推理的多属性决策中若干问题的研究[博士学位论文], 合肥工业大学, 中国, 2009.

    Zhou Mi. Research on Some Problems in the Multiple Attribute Decision Making Based on Evidential Reasoning Approach [Ph.D. dissertation], Hefei University of Technology, China, 2009.
    [62] 宋亚飞, 王晓丹, 雷蕾. 基于直觉模糊集的时域证据组合方法研究. 自动化学报, 2016, 42(9): 1322−1338

    Song Ya-Fei, Wang Xiao-Dan, Lei Lei. Combination of temporal evidence sources based on intuitionistic fuzzy sets. Acta Automatica Sinica, 2016, 42(9): 1322−1338
    [63] Yang Z L, Maistralis L, Bonsall S, Wang J. Use of fuzzy evidential reasoning for vessel selection under uncertainty. Multi-Criteria Decision Making in Maritime Studies and Logistics. Cham: Springer, 2018. 105−121
    [64] Lee E S, Zhu Q. An interval Dempster-Shafer approach. Computers and Mathematics with Applications, 1992, 24(7): 89−95
    [65] Denœux T. Reasoning with imprecise belief structures. International Journal of Approximate Reasoning, 1999, 20(1): 79−111 doi: 10.1016/S0888-613X(00)88944-6
    [66] Denœux T. Modeling vague beliefs using fuzzy-valued belief structures. Fuzzy Sets and Systems, 2000, 116(2): 167−199 doi: 10.1016/S0165-0114(98)00405-9
    [67] Yager R R. Dempster-Shafer belief structures with interval valued focal weights. International Journal of Intelligent Systems, 2001, 16(4): 497−512 doi: 10.1002/int.1020
    [68] Wang Y M, Yang J B, Xu D L, Chin K S. On the combination and normalization of interval-valued belief structures. Information Sciences, 2007, 177(5): 1230−1247 doi: 10.1016/j.ins.2006.07.025
    [69] 徐晓滨, 郑进, 徐冬玲, 杨剑波. 基于证据推理规则的信息融合故障诊断方法. 控制理论与应用, 2015, 32(9): 1170−1182 doi: 10.7641/CTA.2015.50245

    Xu Xiao-Bin, Zheng Jin, Xu Dong-Ling, Yang Jian-Bo. Information fusion method for fault diagnosis based on evidential reasoning rule. Control Theory and Applications, 2015, 32(9): 1170−1182 doi: 10.7641/CTA.2015.50245
    [70] Zhao F J, Zhou Z J, Hu C H, Chang L L, Zhou Z G, Li G L. A new evidential reasoning-based method for online safety assessment of complex systems. IEEE Transactions on Systems, Man, and Cybernetics: Systems, 2018, 48(6): 954−966 doi: 10.1109/TSMC.2016.2630800
    [71] Smarandache F, Dezert J, Tacnet J M. Fusion of sources of evidence with different importances and reliabilities. In: Proceedings of the 13th International Conference on Information Fusion. Edinburgh, UK: IEEE, 2010. 1−8
    [72] 邬永革, 黄炯, 杨静宇. 基于多传感器信息融合的机器人障碍检测和环境建模. 自动化学报, 1997, 23(5): 641−648

    Wu Yong-Ge, Huang Jiong, Yang Jing-Yu. Mobile robot obstacle detection and environment modeling with sensor fusion. Acta Automatica Sinica, 1997, 23(5): 641−648
    [73] Bosse E, Simard M A. Managing evidential reasoning for identity information fusion. Optical Engineering, 1998, 37(2): 391−400 doi: 10.1117/1.601625
    [74] Liu Z G, Dezert J, Mercier G, Pan Q. Dynamic evidential reasoning for change detection in remote sensing images. IEEE Transactions on Geoscience and Remote Sensing, 2012, 50(5): 1955−1967 doi: 10.1109/TGRS.2011.2169075
    [75] Paksoy A, Göktürk M. Information fusion with Dempster-Shafer evidence theory for software defect prediction. Procedia Computer Science, 2011, 3: 600−605 doi: 10.1016/j.procs.2010.12.100
    [76] Quost B, Masson M H, Denœux T. Classifier fusion in the Dempster-Shafer framework using optimized t-norm based combination rules. International Journal of Approximate Reasoning, 2011, 52(3): 353−374 doi: 10.1016/j.ijar.2010.11.008
    [77] Li B, Wang H W, Yang J B, Guo M, Qi C. A belief-rule-based inference method for aggregate production planning under uncertainty. International Journal of Production Research, 2013, 51(1): 83−105 doi: 10.1080/00207543.2011.652262
    [78] Kong G L, Xu D L, Yang J B, Ma X M. Combined medical quality assessment using the evidential reasoning approach. Expert Systems with Applications, 2015, 42(13): 5522−5530 doi: 10.1016/j.eswa.2015.03.009
    [79] Zhu W D, Wang Y L, Wu Y, Sun Y B. A fusion model for securities analysts′ stock rating information based on the evidential reasoning algorithm under two-dimensional progressive recognition framework. International Journal of Security and Its Applications, 2016, 10(7): 213−228 doi: 10.14257/ijsia.2016.10.7.19
    [80] Li F J, Qian Y H, Wang J T, Liang J Y. Multigranulation information fusion: A Dempster-Shafer evidence theory-based clustering ensemble method. Information Sciences, 2017, 378: 389−409 doi: 10.1016/j.ins.2016.10.008
    [81] Von Winterfeldt D, Edwards W. Decision Analysis and Behavioral Research. New York: Cambridge University Press, 1986. 6−8
    [82] Yang J B, Sen P. Multiple attribute design evaluation of complex engineering products using the evidential reasoning approach. Journal of Engineering Design, 1997, 8(3): 211−230 doi: 10.1080/09544829708907962
    [83] Sii H S, Wang J. A design-decision support framework for evaluation of design options/proposals using a composite structure methodology based on the approximate reasoning approach and the evidential reasoning method. Proceedings of the Institution of Mechanical Engineers, Part E: Journal of Process Mechanical Engineering, 2003, 217(1): 59−76 doi: 10.1243/09544080360562990
    [84] Wang Y M, Elhag T. M S. Evidential reasoning approach for bridge condition assessment. Expert Systems with Applications, 2008, 34(1): 689−699 doi: 10.1016/j.eswa.2006.10.006
    [85] 付艳华, 张化光, 唐加福. 基于证据推理的供应商绩效评价与决策. 东北大学学报(自然科学版), 2009, 30(11): 1546−1549 doi: 10.3321/j.issn:1005-3026.2009.11.007

    Fu Yan-Hua, Zhang Hua-Guang, Tang Jia-Fu. Performance evaluation for selection of supplier and decision-making based on evidential reasoning. Journal of Northeastern University (Natural Science), 2009, 30(11): 1546−1549 doi: 10.3321/j.issn:1005-3026.2009.11.007
    [86] Shintemirov A, Tang W H, Wu Q H. Transformer winding condition assessment using frequency response analysis and evidential reasoning. IET Electric Power Applications, 2010, 4(3): 198−212 doi: 10.1049/iet-epa.2009.0102
    [87] 沈江, 余海燕, 徐曼. 实体异构性下证据链融合推理的多属性群决策. 自动化学报, 2015, 41(4): 832−842

    Shen Jiang, Yu Hai-Yan, Xu Man. Heterogeneous evidence chains based fusion reasoning for multi-attribute group decision making. Acta Automatica Sinica, 2015, 41(4): 832−842
    [88] 刘佳俊, 胡昌华, 周志杰, 张鑫, 王鹏. 基于证据推理和置信规则库的装备寿命评估. 控制理论与应用, 2015, 32(2): 231−238 doi: 10.7641/CTA.2015.40406

    Liu Jia-Jun, Hu Chang-Hua, Zhou Zhi-Jie, Zhang Xin, Wang Peng. Life assessment approach of equipment based on belief-rule-base and evidential reasoning. Control Theory and Applications, 2015, 32(2): 231−238 doi: 10.7641/CTA.2015.40406
    [89] Li G L, Zhou Z J, Hu C H, Chang L L, Zhou Z G, Zhao F J. A new safety assessment model for complex system based on the conditional generalized minimum variance and the belief rule base. Safety Science, 2017, 93: 108−120 doi: 10.1016/j.ssci.2016.11.011
    [90] Bao T T, Xie X L, Long P Y, Wei Z K. MADM method based on prospect theory and evidential reasoning approach with unknown attribute weights under intuitionistic fuzzy environment. Expert Systems with Applications, 2017, 88: 305−317 doi: 10.1016/j.eswa.2017.07.012
    [91] Zhou M, Liu X B, Chen Y W, Yang J B. Evidential reasoning rule for MADM with both weights and reliabilities in group decision making. Knowledge-Based Systems, 2018, 143: 142−161 doi: 10.1016/j.knosys.2017.12.013
    [92] 汪洪桥, 孙富春, 蔡艳宁, 陈宁, 丁林阁. 多核学习方法. 自动化学报, 2010, 36(8): 1037−1050 doi: 10.3724/SP.J.1004.2010.01037

    Wang Hong-Qiao, Sun Fu-Chun, Cai Yan-Ning, Chen Ning, Ding Lin-Ge. On multiple kernel learning methods. Acta Automatica Sinica, 2010, 36(8): 1037−1050 doi: 10.3724/SP.J.1004.2010.01037
    [93] Van Cleynenbreugel J, Osinga S A, Fierens F, Suetens P, Oosterlinck A. Road extraction from multi-temporal satellite images by an evidential reasoning approach. Pattern Recognition Letters, 1991, 12(6): 371−380 doi: 10.1016/S0167-8655(05)80007-8
    [94] Kim H, Swain P H. Evidential reasoning approach to multisource-data classification in remote sensing. IEEE Transactions on Systems, Man, and Cybernetics, 1995, 25(8): 1257−1265 doi: 10.1109/21.398687
    [95] 司小胜, 胡昌华, 周志杰. 基于证据推理的故障预报模型. 中国科学: 信息科学, 2010, 40(7): 954−967

    Si Xiao-Sheng, Hu Chang-Hua, Zhou Zhi-Jie. Fault prediction model based on evidential reasoning approach. Science China Information Sciences, 2010, 40(7): 954−967
    [96] Liu Z G, Pan Q, Mercier G, Dezert J. A new incomplete pattern classification method based on evidential reasoning. IEEE Transactions on Cybernetics, 2015, 45(4): 635−646 doi: 10.1109/TCYB.2014.2332037
    [97] 李新德, 王丰羽. 一种基于ISODATA聚类和改进相似度的证据推理方法. 自动化学报, 2015, 41(3): 575−590

    Li Xin-De, Wang Feng-Yu. A method of evidence reasoning based on ISODATA clustering and improved similarity measure. Acta Automatica Sinica, 2015, 41(3): 575−590
    [98] Wang Y N, Dai Y P, Chen Y W, Meng F C. The evidential reasoning approach to medical diagnosis using intuitionistic fuzzy Dempster-Shafer theory. International Journal of Computational Intelligence Systems, 2015, 8(1): 75−94 doi: 10.2991/ijcis.2015.8.1.7
    [99] 周志杰, 赵福均, 胡昌华, 王力, 冯志超, 刘涛源. 基于证据推理的航天继电器故障预测方法. 山东大学学报(工学版), 2017, 47(5): 22−29

    Zhou Zhi-Jie, Zhao Fu-Jun, Hu Chang-Hua, Wang Li, Feng Zhi-Chao, Liu Tao-Yuan. Failure prognosis method based on evidential reasoning for aerospace relay. Journal of Shandong University (Engineering Science), 2017, 47(5): 22−29
    [100] 袁杰, 王福利, 王姝, 赵露平. 基于D-S融合的混合专家知识系统故障诊断方法. 自动化学报, 2017, 43(9): 1580−1587

    Yuan Jie, Wang Fu-Li, Wang Shu, Zhao Lu-Ping. A fault diagnosis approach by D-S fusion theory and hybrid expert knowledge system. Acta Automatica Sinica, 2017, 43(9): 1580−1587
    [101] Xu X B, Zheng J, Yang J B, Xu D L, Chen Y W. Data classification using evidence reasoning rule. Knowledge-Based Systems, 2017, 116: 144−151 doi: 10.1016/j.knosys.2016.11.001
    [102] Yang Y, Xu D L, Yang J B, Chen Y W. An evidential reasoning-based decision support system for handling customer complaints in mobile telecommunications. Knowledge-Based Systems, 2018, 162: 202−210 doi: 10.1016/j.knosys.2018.09.029
    [103] Sönmez M, Holt G D, Yang J B, Graham G. Applying evidential reasoning to prequalifying construction contractors. Journal of Management in Engineering, 2002, 18(3): 111−119 doi: 10.1061/(ASCE)0742-597X(2002)18:3(111)
    [104] Yang J B, Xu D L. Nonlinear information aggregation via evidential reasoning in multiattribute decision analysis under uncertainty. IEEE Transactions on Systems, Man, and Cybernetics-Part A: Systems and Humans, 2002, 32(3): 376−393 doi: 10.1109/TSMCA.2002.802809
    [105] Sadiq R, Najjaran H, Kleiner Y. Investigating evidential reasoning for the interpretation of microbial water quality in a distribution network. Stochastic Environmental Research and Risk Assessment, 2006, 21(1): 63−73 doi: 10.1007/s00477-006-0044-7
    [106] Xu D L, Liu J, Yang J B, Liu G P, Wang J, Jenkinson I, Ren J. Inference and learning methodology of belief-rule-based expert system for pipeline leak detection. Expert Systems with Applications, 2007, 32(1): 103−113
    [107] Zhou Z J, Hu C H, Yang J B, Xu D L, Zhou D H. Online updating belief rule based system for pipeline leak detection under expert intervention. Expert Systems with Applications, 2009, 36(4): 7700−7709 doi: 10.1016/j.eswa.2008.09.032
    [108] Zhou Z J, Hu C H, Xu D L, Yang J B, Zhou D H. New model for system behavior prediction based on belief rule based systems. Information Sciences, 2010, 180(24): 4834−4864 doi: 10.1016/j.ins.2010.08.016
    [109] Hu C H, Si X S, Yang J B. System reliability prediction model based on evidential reasoning algorithm with nonlinear optimization. Expert Systems with Applications, 2010, 37(3): 2550−2562 doi: 10.1016/j.eswa.2009.08.024
    [110] Chen Y W, Poon S H, Yang J B, Xu D L, Zhang D X, Acomb S. Belief rule-based system for portfolio optimisation with nonlinear cash-flows and constraints. European Journal of Operational Research, 2012, 223(3): 775−784 doi: 10.1016/j.ejor.2012.07.008
    [111] Fu C, Yang J B, Yang S L. A group evidential reasoning approach based on expert reliability. European Journal of Operational Research, 2015, 246(3): 886−893 doi: 10.1016/j.ejor.2015.05.042
    [112] Chen S Q, Wang Y M, Shi H L, Zhang M J, Lin Y. Evidential reasoning with discrete belief structures. Information Fusion, 2018, 41: 91−104 doi: 10.1016/j.inffus.2017.08.009
    [113] Guo M, Chen Y W, Wang H W, Yang J B, Zhang K Y. The single-period (newsvendor) problem under interval grade uncertainties. European Journal of Operational Research, 2019, 273(1): 198−216 doi: 10.1016/j.ejor.2018.07.048
  • 加载中
图(1) / 表(3)
计量
  • 文章访问数:  3114
  • HTML全文浏览量:  1076
  • PDF下载量:  683
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-09-24
  • 录用日期:  2019-12-15
  • 网络出版日期:  2021-05-21
  • 刊出日期:  2021-05-20

目录

    /

    返回文章
    返回