2.845

2023影响因子

(CJCR)

  • 中文核心
  • EI
  • 中国科技核心
  • Scopus
  • CSCD
  • 英国科学文摘

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于平行多种群与冗余基因策略的置信规则库优化方法

徐晓滨 朱伟 徐晓健 侯平智 常雷雷

徐晓滨, 朱伟, 徐晓健, 侯平智, 常雷雷. 基于平行多种群与冗余基因策略的置信规则库优化方法. 自动化学报, 2022, 48(8): 2007−2017 doi: 10.16383/j.aas.c190580
引用本文: 徐晓滨, 朱伟, 徐晓健, 侯平智, 常雷雷. 基于平行多种群与冗余基因策略的置信规则库优化方法. 自动化学报, 2022, 48(8): 2007−2017 doi: 10.16383/j.aas.c190580
Xu Xiao-Bin, Zhu Wei, Xu Xiao-Jian, Hou Ping-Zhi, Chang Lei-Lei. Belief rule base optimization method based on parallel multi-population and redundant genes strategy. Acta Automatica Sinica, 2022, 48(8): 2007−2017 doi: 10.16383/j.aas.c190580
Citation: Xu Xiao-Bin, Zhu Wei, Xu Xiao-Jian, Hou Ping-Zhi, Chang Lei-Lei. Belief rule base optimization method based on parallel multi-population and redundant genes strategy. Acta Automatica Sinica, 2022, 48(8): 2007−2017 doi: 10.16383/j.aas.c190580

基于平行多种群与冗余基因策略的置信规则库优化方法

doi: 10.16383/j.aas.c190580
基金项目: 浙江省杰出青年基金 (LR21F030001), 浙江省重点研发计划基金 (2021C03015, 2018C01031), 国家自然科学基金 (61903108, U1709215), 浙江省自然科学基金(LY21F030011)资助
详细信息
    作者简介:

    徐晓滨:杭州电子科技大学教授. 主要研究方向为模糊集理论, 证据理论及其在不确定信息处理中的应用.E-mail: xuxiaobin1980@163.com

    朱伟:杭州电子科技大学自动化学院硕士研究生. 主要研究方向为置信规则库的结构学习和参数学习.E-mail: zhuwei198@163.com

    徐晓健:杭州电子科技大学讲师. 2018年获得武汉理工大学博士学位. 主要研究方向为状态监测, 信息融合和智能决策.E-mail: xuxiaojian880303@163.com

    侯平智:杭州电子科技大学教授. 主要研究方向为自动化控制系统集成, 智能控制.E-mail: houpingzhi@hdu.edu.cn

    常雷雷:杭州电子科技大学中国—奥地利人工智能与先进制造“一带一路”联合实验室副教授. 2004年获得国防科技大学博士学位. 主要研究方向为置信规则库的结构学习, 参数学习以及复杂系统建模. 本文通信作者. E-mail: leileichang@hotmail.com

Belief Rule Base Optimization Method Based on Parallel Multi-population and Redundant Genes Strategy

Funds: Supported by Zhejiang Outstanding Youth Fund (LR21F030001), Zhejiang Province Key Research and Development Projects (2021C03015, 2018C01031), National Natural Science Foundation of China (61903108, U1709215), and Natural Science Foundation of Zhejiang Province (LY21F030011)
More Information
    Author Bio:

    XU Xiao-Bin Professor at Hangzhou Dianzi University. His research interest covers fuzzy set theory, evidence theory and its applications in the processing of uncertain information

    ZHU Wei Master student in the Department of Automation, Hangzhou Dianzi University. His research interest covers BRB structure and parameter learning

    XU Xiao-Jian Lecturer at Hangzhou Dianzi University. She received her Ph.D. degree from Wuhan University in 2018. Her research interest covers condition monitoring, information fusion, and intelligent decision making

    HOU Ping-Zhi Professor at Hangzhou Dianzi University. His research interest covers automated control system integration and intelligent control

    CHANG Lei-Lei Associate professor at China-Austria Belt and Road Joint Laboratory on Artificial Intelligence and Advanced Manufacturing, Hangzhou Dianzi University. He received his Ph.D. degree from National University of Defense Technology in 2014. His research interest covers belief rule base structure, parameter learning, and complex system modeling. Corresponding author of this paper

  • 摘要: 置信规则库(Belief rule base, BRB)的参数学习和结构学习共同影响着置信规则库的建模精度和复杂度. 为了提高BRB结构学习和参数学习的优化效率, 本文提出了一种基于平行多种群(Parallel multi-population)策略和冗余基因(Redundant genes)策略的置信规则库优化方法. 该方法采用平行多种群策略以实现对具有不同数量规则BRB同时进行优化的目的, 采用冗余基因策略以确保具有不同数量规则的BRB能够顺利进行(交叉, 变异等)相关优化操作. 最终自动生成具有不同数量规则BRB的最优解, 并得出帕累托前沿(Pareto frontier), 决策者可以根据自身偏好和实际问题需求, 综合权衡并在帕累托前沿中筛选最优解. 最后以某输油管道泄漏检测问题作为示例验证本文提出方法的有效性, 示例分析结果表明本文提出的方法可以一次生成具有多条规则BRB的最优解, 并且可以准确绘制出帕累托前沿, 为综合决策提供较强的决策支持.
  • 图  1  平行多种群策略

    Fig.  1  Parallel multiple population strategy

    图  2  优化算法的6个步骤

    Fig.  2  Optimization algorithm with six steps

    图  3  添加冗余基因

    Fig.  3  Add redundant genes

    图  4  删除冗余基因

    Fig.  4  Remove redundant genes

    图  5  权衡分析

    Fig.  5  Tradeoff analysis

    图  7  输油管道泄漏检测结果与误差对比

    Fig.  7  Pipeline leak detection test results and error comparison

    图  6  帕累托前沿的优化过程

    Fig.  6  Optimal process of the Pareto frontier

    表  1  运行30次的数据结果

    Table  1  Statistics of 30 runs

    第 3 条第 4 条第 5 条第 6 条第 7 条第 8 条
    min${{4.0389\times10^ {1} } }$$3.2065\times10^{1}$${{2.9210\times10^{1}}}$$2.9208\times10^{1}$$2.9200\times10^{1}$$2.9189\times10^{1}$
    avg${{5.3796\times10^{1}}}$$3.9717\times10^{1}$${{3.7355\times10^{1}}}$$3.7332\times10^{1}$$3.6770\times10^{1}$$4.4892\times10^{1}$
    vara${{9.5350\times10^{2}}}$$5.2327\times10^{2}$${{3.4741\times10^{2}}}$$3.2595\times10^{2}$$4.3643\times10^{2}$$2.4779\times10^{2}$
    下载: 导出CSV

    表  2  具有5条规则的最优BRB参数

    Table  2  Optimal BRB parameters with five rules

    序号权重前提属性泄露大小
    流量差压力差02468
    10.8642$-10.0000$$-0.002$0.39500.06920.01940.01220.5042
    21.0000$-7.5000$$-0.0176$0.78780.21090.00010.00000.0012
    30.0911$-1.7830$0.00650.01010.12450.05250.57940.2335
    40.28380.384 50.00730.20130.20720.15130.21640.2238
    50.24992.000 00.04000.65880.04980.09290.02430.1742
    下载: 导出CSV

    表  3  基于不同BRB优化方法的实验结果对比分析

    Table  3  Comparative analysis of experimental results based on different BRB optimization methods

    序号方法描述MSE (MAE)尺寸(训练/测试)NORNOP
    1其他方法ANFS0.50739/
    2SVM0.4219C = 10, $\delta^2=1$
    3以前 BRB 学习方法局部训练[24]0.4049500/200 856336
    4在线更新[9]0.7880800/200 856336
    5适应性学习[10]0.3990500/200 856349
    6动态规则调整[6]0.5040900/200 814108
    0.4450639
    7双层优化[15]0.2917500/200 8536
    8一般并集 BRB 优化[26]0.3741500/200 8320
    0.2848536
    0.26791292
    9本文方法平行多种群与冗余基因0.4038500/200 83240
    0.29215
    注: “NOR”表示规则数量 (Number of rules), “NOP”表示参数数量 (Number of parameters)
    下载: 导出CSV
  • [1] Yang J B, Singh M G. An evidential reasoning approach for multiple-attribute decision making with uncertainty. IEEE Transactions on Systems, Man, and Cybernetics, 1994, 24(1): 1-18 doi: 10.1109/21.259681
    [2] Yang J B, Liu J, Wang J, Sii H S, Wang H W. Belief rule-base inference methodology using the evidential reasoning approach-RIMER. IEEE Transactions on Systems, Man, and Cybernetics-Part A: Systems and Humans, 2006, 36(2): 266-285 doi: 10.1109/TSMCA.2005.851270
    [3] Hossain M S, Rahaman S, Kor A L, Andersson K, Pattinson C. A belief rule based expert system for datacenter PUE prediction under uncertainty. IEEE Transactions on Sustainable Computing, 2017, 2(2): 140-153 doi: 10.1109/TSUSC.2017.2697768
    [4] Yang J B, Xu D L. Nonlinear information aggregation via evidential reasoning in multiattribute decision analysis under uncertainty. IEEE Transactions on Systems, Man, and Cybernetics-Part A: Systems and Humans, 2002, 32(3): 376-393 doi: 10.1109/TSMCA.2002.802809
    [5] Chang L L, Zhou Y, Jiang J, Li M J, Zhang X H. Structure learning for belief rule base expert system: A comparative study. Knowledge-Based Systems, 2013, 39: 159-172 doi: 10.1016/j.knosys.2012.10.016
    [6] Wang Y M, Yang L H, Fu Y G, Chang L L, Chin K S. Dynamic rule adjustment approach for optimizing belief rule-base expert system. Knowledge-Based Systems, 2016, 96: 40-60 doi: 10.1016/j.knosys.2016.01.003
    [7] Li G L, Zhou Z J, Hu C H, Chang L L, Zhou Z G, Zhao F J. A new safety assessment model for complex system based on the conditional generalized minimum variance and the belief rule base. Safety Science, 2017, 93: 108-120 doi: 10.1016/j.ssci.2016.11.011
    [8] Yang J B, Liu J, Xu D L, Wang J, Wang H W. Optimization models for training belief-rule-based systems. IEEE Transactions on Systems, Man, and Cybernetics-Part A: Systems and Humans, 2007, 37(4): 569-585 doi: 10.1109/TSMCA.2007.897606
    [9] Zhou Z J, Hu C H, Xu D L, Yang J B, Zhou D H. Bayesian reasoning approach based recursive algorithm for online updating belief rule based expert system of pipeline leak detection. Expert Systems With Applications, 2011, 38(4): 3937-3943 doi: 10.1016/j.eswa.2010.09.055
    [10] Chen Y W, Yang J B, Xu D L, Zhou Z J, Tang D W. Inference analysis and adaptive training for belief rule based systems. Expert Systems With Applications, 2011, 38(10): 12845-12860 doi: 10.1016/j.eswa.2011.04.077
    [11] Savan E E, Yang J B, Xu D L, Chen Y W. A genetic algorithm search heuristic for belief rule-based model-structure validation. In: Proceedings of the 2013 IEEE International Conference on Systems, Man, and Cybernetics. Manchester, UK: IEEE, 2013. 1373−1378
    [12] Chang L L, Zhou Z J, You Y, Yang L H, Zhou Z G. Belief rule based expert system for classification problems with new rule activation and weight calculation procedures. Information Sciences, 2016, 336: 75-91 doi: 10.1016/j.ins.2015.12.009
    [13] 马炫, 李星, 唐荣俊, 刘庆. 一种求解符号回归问题的粒子群优化算法. 自动化学报, 2020, 46(8): 1714-1726 doi: 10.16383/j.aas.c180035

    Ma Xuan, Li Xing, Tang Rong-Jun, Liu Qing. A particle swarm optimization approach for symbolic regression. Acta Automatica Sinica, 2020, 46(8): 1714-1726 doi: 10.16383/j.aas.c180035
    [14] Chang L L, Zhou Z J, Chen Y W, Xu X B, Sun J B, Liao T J, et al. Akaike information criterion-based conjunctive belief rule base learning for complex system modeling. Knowledge-Based Systems, 2018, 161: 47-64 doi: 10.1016/j.knosys.2018.07.029
    [15] Chang L L, Zhou Z J, Chen Y W, Liao T J, Hu, Y, et al. Belief Rule Base Structure and parameter joint optimization under disjunctive assumption for nonlinear complex system modeling. IEEE Transactions on Systems, Man, and Cybernetics: Systems, 2018, 48(9): 1542-1554 doi: 10.1109/TSMC.2017.2678607
    [16] Yang L H, Wang Y M, Liu J, Martínez L. A joint optimization method on parameter and structure for belief-rule-based systems. Knowledge-Based Systems, 2018, 142: 220-240 doi: 10.1016/j.knosys.2017.11.039
    [17] Chen Y, Chen Y W, Xu X B, Pan C C, Yang J B, Yang G K. A data-driven approximate causal inference model using the evidential reasoning rule. Knowledge-Based Systems, 2015, 88: 264-272 doi: 10.1016/j.knosys.2015.07.026
    [18] Zhou Z J, Hu C H, Xu D L, Yang J B, Zhou D H. New model for system behavior prediction based on belief rule systems. Information Sciences, 2010, 180(24): 4834-4864 doi: 10.1016/j.ins.2010.08.016
    [19] Wu G H, Mallipeddi R, Suganthan P N, Wang R, Chen H K. Differential evolution with multi-population based ensemble of mutation strategies. Information Sciences, 2016, 329: 329-345 doi: 10.1016/j.ins.2015.09.009
    [20] Qu B Y, Suganthan P N, Liang J J. Differential evolution with neighborhood mutation for multimodal optimization. IEEE Transactions on Evolutionary Computation, 2012, 16(5): 601-614 doi: 10.1109/TEVC.2011.2161873
    [21] Elsayed S, Sarker R, Coello C C. Enhanced multi-operator differential evolution for constrained optimization. In: Proceedings of the 2016 IEEE Congress on Evolutionary Computation (CEC). Vancouver, Canada: IEEE, 2016. 4191−4198
    [22] Toledo C F M, De Oliveira R R R, FrançA P M. A hybrid multi-population genetic algorithm applied to solve the multi-level capacitated lot sizing problem with backlogging. Computers & Operations Research, 2013, 40(4): 910-919
    [23] Brown K, Adger W N, Tompkins E, Bacon P, Shim D, Young K. Trade-off analysis for marine protected area management. Ecological Economics, 2001, 37(3): 417-434 doi: 10.1016/S0921-8009(00)00293-7
    [24] Xu D L, Liu J, Yang J B, Liu G P, Wang J, Jenkinson I, et al. Inference and learning methodology of belief-rule-based expert system for pipeline leak detection. Expert Systems With Applications, 2007, 32(1): 103-113 doi: 10.1016/j.eswa.2005.11.015
    [25] Hancer E, Karaboga D. A comprehensive survey of traditional, merge-split and evolutionary approaches proposed for determination of cluster number. Swarm and Evolutionary Computation, 2017, 32: 49-67 doi: 10.1016/j.swevo.2016.06.004
    [26] Chang L L, Zhou Z J, Liao H C, Chen Y W, Tan X, Herrera F. Generic disjunctive belief-rule-base modeling, inferencing, and optimization. IEEE Transactions on Fuzzy Systems, 2019, 27(9): 1866-1880 doi: 10.1109/TFUZZ.2019.2892348
  • 加载中
图(7) / 表(3)
计量
  • 文章访问数:  515
  • HTML全文浏览量:  85
  • PDF下载量:  128
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-08-20
  • 录用日期:  2020-02-07
  • 网络出版日期:  2022-07-07
  • 刊出日期:  2022-06-01

目录

    /

    返回文章
    返回