2.793

2018影响因子

(CJCR)

  • 中文核心
  • EI
  • 中国科技核心
  • Scopus
  • CSCD
  • 英国科学文摘

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

考虑车辆横向主动安全的智能驾驶员模型

隋振 梁硕 田彦涛

隋振, 梁硕, 田彦涛. 考虑车辆横向主动安全的智能驾驶员模型. 自动化学报, 2020, 46(x): 1−13 doi: 10.16383/j.aas.c190526
引用本文: 隋振, 梁硕, 田彦涛. 考虑车辆横向主动安全的智能驾驶员模型. 自动化学报, 2020, 46(x): 1−13 doi: 10.16383/j.aas.c190526
Sui Zhen, Liang Shuo, Tian Yan-Tao. Intelligent driving model considering lateral active safety of vehicles. Acta Automatica Sinica, 2020, 46(x): 1−13 doi: 10.16383/j.aas.c190526
Citation: Sui Zhen, Liang Shuo, Tian Yan-Tao. Intelligent driving model considering lateral active safety of vehicles. Acta Automatica Sinica, 2020, 46(x): 1−13 doi: 10.16383/j.aas.c190526

考虑车辆横向主动安全的智能驾驶员模型

doi: 10.16383/j.aas.c190526
基金项目: 国家自然科学基金联合基金项目 (U1664263),国家重点研发计划项目(2016YFB0101102)资助
详细信息
    作者简介:

    隋振:吉林大学通信工程学院副教授. 吉林大学博士. 主要研究方向为复杂系统建模优化与控制. E-mail: suizhen@jlu.edu.cn

    梁硕:吉林大学硕士研究生. 2019年获得吉林大学通信工程学院硕士学位. 主要研究方向为电动汽车主动安全系统与智能辅助驾驶. E-mail: liangshuo0501@163.com

    田彦涛:吉林大学通信工程学院教授. 1993年吉林工业大学获得博士学位. 主要研究方向为复杂系统建模、优化与控制、电动汽车主动安全系统与智能辅助驾驶等. E-mail: tianyt@jlu.edu.cn

Intelligent Driving Model Considering Lateral Active Safety of Vehicles

Funds: Supported by National Natural Science Foundation Joint Fund Project (U1664263), National Key Research and Development Plan Project (2016YFB0101102)
  • 摘要: 本文将结合智能车面临的横向安全问题, 设计一种具有横向安全性的智能驾驶员模型. 该系统由转向控制、速度控制和决策规划三个模块组成. 该系统解决的横向安全问题包括: 一是通过在转向控制中加入主要约束提高车辆在转向过程中的横向稳定性, 减小车辆发生侧滑、侧倾、侧偏等风险; 二是在换道场景下, 决策规划单元合理分析交通环境中的车间距并计算出驶入临近车道的速度和轨迹, 使智能车实现安全换道. CarSim/Simulink仿真结果表明, 该智能驾驶员系统提高了车辆行驶的横向安全性.
  • 图  1  驾驶员模型结构

    Fig.  1  The Structure of the Driver Model

    图  2  简化3自由度车辆动力学模型

    Fig.  2  The Model of the Vehicle of 3DOF

    图  3  车辆侧倾动力学模型

    Fig.  3  The Roll Dynamic Model of the Vehicle

    图  4  换道前车辆分布情况

    Fig.  4  Distribution of the Vehicles before Lane Change

    图  5  换道后车辆分布情况

    Fig.  5  The Distribution of the Vehicles after Lane Change

    图  6  轨迹规划原理

    Fig.  6  The Principle of Trajectory Planing

    图  7  工况一条件下车辆行驶状态

    Fig.  7  The States of the Vehicle on Work Condition 1

    图  8  工况二条件下车辆行驶状态

    Fig.  8  The States of the Vehicle on Work Condition 2

    图  9  工况三条件下车辆行驶状态

    Fig.  9  The States of the Vehicle on Work Condition 3

    图  10  安全车距定义

    Fig.  10  The Definition of the Vehicles Safety Distance

    图  11  工况一换道轨迹

    Fig.  11  The Trajectory of the Vehicle on Work Condition 1

    图  15  工况一智能车与目标车道后车间距

    Fig.  15  The Distance between the Intelligent Vehicle with the Follow Vehicle of the Target Lane on Work Condition 1

    图  12  工况一速度控制

    Fig.  12  The Velocity of the Vehicle on Work Condition 1

    图  13  工况一智能车与原车道前车间距

    Fig.  13  The Distance between the Intelligent Vehicle with the Lead Vehicle of the Original Lane on Work Condition 1

    图  14  工况一智能车与目标车道前车间距

    Fig.  14  The Distance between the Intelligent Vehicle with the Lead Vehicle of the Target Lane on Work Condition 1

    图  16  工况二换道轨迹

    Fig.  16  The Trajectory of the Vehicle on Work Condition 2

    图  20  工况二智能车与目标车道后车间距

    Fig.  20  The Distance between the Intelligent Vehicle with the Follow Vehicle of the Target Lane on Work Condition 2

    图  17  工况二速度控制

    Fig.  17  The Velocity of the Vehicle on Work Condition 2

    图  18  工况二智能车与原车道前车间距

    Fig.  18  The Distance between the Intelligent Vehicle with the Lead Vehicle of the Original Lane on Work Condition 2

    图  19  工况二智能车与目标车道前车间距

    Fig.  19  The Distance between the Intelligent Vehicle with the Lead Vehicle of the Target Lane on Work Condition 2

    图  21  工况三换道轨迹

    Fig.  21  The Trajectory of the Vehicle on Work Condition 3

    图  25  工况三智能车与目标车道后车间距

    Fig.  25  The Distance between the Intelligent Vehicle with the Follow Vehicle of the Target Lane on Work Condition 3

    图  22  工况三速度控制

    Fig.  22  The Velocity of the Vehicle on Work Condition 3

    图  23  工况三智能车与原车道前车间距

    Fig.  23  The Distance between the Intelligent Vehicle with the Lead Vehicle of the Original Lane on Work Condition 3

    图  24  工况三智能车与目标车道前车间距

    Fig.  24  The Distance between the Intelligent Vehicle with the Lead Vehicle of the Target Lane on Work Condition 3

    表  1  智能驾驶员系统参数设置

    Table  1  The Definition of the Intelligent Driver System

    实验车M Car A Car B Car C
    最小安全间距$ {d_o}(m) $ $ {d_o}(3) $ $ {d_o}(2) $ $ {d_o}(1) $
    加速度幅度$ (m/{s^2}) $ 1.8 2.2 2.5
    加速度增量$ (m/{s^2}) $ 0.09 0.11 0.12
    反应时间$ (s) $ 0.4 0.7 0.9
    下载: 导出CSV
  • [1] 李力, 王飞跃, 郑南宁, 张毅. 驾驶行为智能分析的研究与发展. 自动化学报, 2007, 33(10): 1014−1022

    Lu Li, Wang Yue-Fei, Zheng Nan-Ning, Zhang Yi. Research and development of intelligent analysis of driving behavior. Acta Automatica Sinica, 2007, 33(10): 1014−1022
    [2] Y Yoshida, Q Wang, M Oya, K Okumura. Adaptive Longitudinal Velocity and Lane Keeping Control of Four-Wheel-Steering Vehicles. Sice Conference, 2007: 1305−1310
    [3] Qu T, Chen H, Ji Y, et al. Modeling Driver Steering Control Based on Stochastic Model Predictive Control. Modeling Driver Steering Control Based on Stochastic Model Predictive Control. 2013.
    [4] Qu T, Chen H, Cao D, et al. Switching-Based Stochastic Model Predictive Control Approach for Modeling Driver Steering Skill. IEEE Transactions on Intelligent Transportation Systems, 2015, 16(1): 365−375 doi: 10.1109/TITS.2014.2334623
    [5] Falcone P, Tufo M, Borrelli F. A linear time varying model predictive control approach to the integrated vehicle dynamics control problem in autonomous system.
    [6] X Du, KK Tan. Autonomous Vehicle Velocity and Steering Control through Nonlinear Model Predictive Control Scheme. Transportation Electrification Asia-pacific, 2016: 001−006
    [7] SB Amsalu, A Homaifar, F Afghah, S Ramyar. Driver behavior modeling near intersections using support vector machines based on statistical feature extraction. Intelligent Vehicles Symposium, 2015, 36(1): 1270−1275
    [8] 陈虹, 宫洵, 胡云峰. 汽车控制的研究现状与展望. 自动化学报, 2013, 39(4): 322−346 doi: 10.1016/S1874-1029(13)60033-6

    Chen Hong, Gong Xun, Hu Yun-Feng. Research Status and Prospects of Automobile Control. Acta Automatica Sinica, 2013, 39(4): 322−346 doi: 10.1016/S1874-1029(13)60033-6
    [9] Kehtarnavaz N, Groswold N, Miller K, et al. A transportable neural-network approach to autonomous vehicle following. IEEE Transactions on Vehicular Technology, 1998, 42(2): 694−702
    [10] 陈虹. 模型预测控制[M]. 北京: 科学出版社, 2012.

    Chen Hong. Model predictive control. Beijing: Science Press, 2012. (in Chinese)
    [11] 赵曰贺. 驾驶员—汽车闭环系统侧翻稳定性分析及防侧翻控制[D], 南京航空航天大学, 2016.

    Zhao Yue-He. Driver-vehicle closed-loop system rollover stability analysis and rollover prevention control[ph. D. dissertation]. Nanjing Aerospace University, 2016.
    [12] 徐杨, 陆丽萍, 褚端峰, 黄子超. 无人车辆轨迹规划与跟踪控制的统一建模方法. 自动化学报, 2019, 45(4): 799−807

    Xu Yang, Lu Li-Ping, Chu Duan-Feng. Huang Zi-Chao. Unified Modeling Method for Unmanned Vehicle Trajectory Planning and Tracking Control. Acta Automatica Sinica, 2019, 45(4): 799−807
    [13] 龚建伟, 姜岩, 徐威. 无人驾驶车辆模型预测控制. 北京: 北京理工大学出版社, 2014.

    Gong Jian-Wei, Jiang Yan, Xu Wei. Unmanned vehicle model predictive control. Beijing: Beijing Institute of Technology Press, 2014. (in Chinese)
    [14] 刘运通, 石建军, 熊辉. 交通系统仿真技术, 北京: 人民交通出版社, 2002.

    Liu Yun-Heng, Shi Jian-Jun, Xiong Hui. Traffic system simulation technology. Beijing: People's Communications Publishing House, 2002. (in Chinese)
    [15] 袁清. 基于驾驶行为分析的自适应巡航控制算法研究[D]. 吉林大学, 2018

    Yuan Qing. Research on Adaptive Cruise Control Algorithm Based on Driving Behavior Analysis[ph. D. dissertation]. JiLin University, 2018.
    [16] 祁智. 无人驾驶车辆换道与超车控制方法研究[D]. 燕山大学, 2017.

    Qi Zhi. Research on Lane Change and Overtaking Control Method for Unmanned Vehicles. Yanshan Universitya, 2017.
    [17] 郭景华, 李克强, 罗禹贡. 智能车辆运动控制研究综述. 汽车安全与节能学报, 2016, 7(2): 151−159 doi: 10.3969/j.issn.1674-8484.2016.02.003

    Guo Jing-Hua, Li Ke-Qiang, Luo Yu-Gong. A Survey of Research on Intelligent Vehicle Motion Control. Journal of Automotive Safety and Energy, 2016, 7(2): 151−159 doi: 10.3969/j.issn.1674-8484.2016.02.003
    [18] Lu J, Filev D, Prakah-Asante K, et al. From vehicle stability control to intelligent personal minder: Real-time vehicle handling limit warning and driver style characterization IEEE Workshop on Computational Intelligence in Vehicles Systems IEEE, 2009.
  • 加载中
计量
  • 文章访问数:  13
  • HTML全文浏览量:  7
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-07-14
  • 录用日期:  2019-11-15

目录

    /

    返回文章
    返回