2.845

2023影响因子

(CJCR)

  • 中文核心
  • EI
  • 中国科技核心
  • Scopus
  • CSCD
  • 英国科学文摘

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Hyperledger Fabric共识机制优化方案

孟吴同 张大伟

孟吴同,  张大伟.  Hyperledger fabric共识机制优化方案.  自动化学报,  2021,  47(8): 1885−1898 doi: 10.16383/j.aas.c190516
引用本文: 孟吴同,  张大伟.  Hyperledger fabric共识机制优化方案.  自动化学报,  2021,  47(8): 1885−1898 doi: 10.16383/j.aas.c190516
Meng Wu-Tong,  Zhang Da-Wei.  Optimization scheme for hyperledger fabric consensus mechanism.  Acta Automatica Sinica,  2021,  47(8): 1885−1898 doi: 10.16383/j.aas.c190516
Citation: Meng Wu-Tong,  Zhang Da-Wei.  Optimization scheme for hyperledger fabric consensus mechanism.  Acta Automatica Sinica,  2021,  47(8): 1885−1898 doi: 10.16383/j.aas.c190516

Hyperledger Fabric共识机制优化方案

doi: 10.16383/j.aas.c190516
基金项目: 国家留学基金(201807095023)资助
详细信息
    作者简介:

    孟吴同:北京交通大学硕士研究生. 2017年获得河北大学网络工程学士学位. 主要研究方向为区块链.E-mail: mengwt@bjtu.edu.cn

    张大伟:北京交通大学计算机与信息技术学院副教授. 2004年获得北京航空航天大学通信与信息系统专业博士学位. 主要研究方向为区块链, 安全协议, 可信计算. 本文通信作者.E-mail: dwzhang@bjtu.edu.cn

Optimization Scheme for Hyperledger Fabric Consensus Mechanism

Funds: Supported by China Scholarship Council (201807095023)
More Information
    Author Bio:

    MENG Wu-Tong Master student at the School of Computer and Information Technology, Beijing Jiaotong University. He received his bachelor degree in network engineering from Hebei University in 2017. His main research interest is blockchain

    ZHANG Da-Wei Associate professor at the School of Computer and Information Technology, Beijing Jiaotong University. He received his Ph. D. degree in communication and information system from Beihang University in 2004. His research interest covers blockchain, security protocol and trusted computing. Corresponding author of this paper

  • 摘要:

    针对Hyperledger Fabric使用固定背书节点处理交易所带来的安全风险和性能瓶颈问题, 提出了一种非交互、可验证的随机化背书节点优化方案. 基于“背书−排序−验证”的Hyperledger fabric共识模型, 引入背书节点候选集, 使用可验证随机函数随机抽取背书节点进行交易背书, 实现了背书节点的非交互式可验证随机选取和背书过程的并行处理. 分析和实验表明, 优化后的共识机制具有更高的安全性和更快的交易处理速度.

  • 图  1  Hyperledger fabric共识机制

    Fig.  1  Hyperledger fabric consensus mechanism

    图  2  优化后的Hyperledger fabric共识机制

    Fig.  2  Optimized hyperledger fabric consensus mechanism

    图  3  敌手攻击成功的概率

    Fig.  3  Probability of successful enemy attack

    图  4  实验网络拓扑图

    Fig.  4  Network topology of experiment

    图  5  原有方案与优化方案交易时间对比

    Fig.  5  The comparison of transaction time between original scheme and optimized scheme

    图  6  原有方案与优化方案交易延迟对比

    Fig.  6  The comparison of transaction delay between original scheme and optimized scheme

    图  7  原有方案与优化方案通信成本对比

    Fig.  7  The comparison of communication cost between original scheme and optimization scheme

    表  1  优化方案与其他共识机制的对比

    Table  1  Comparison of optimization scheme with other consensus mechanisms

    共识机制 VRF 的作用 共识原理 资源消耗 容错能力
    Algorand 出块节点的选取 VRF + PBFT $3f+1$
    Definity 出块节点的选取 VRF + PoS 较高 $2f+1$
    Ouroboros Praos 出块节点的选取 VRF + PoS 较高 $2f+1$
    优化方案 背书节点的选取 VRF + 背书 + 排序 + 验证 F($m,t$)
    下载: 导出CSV

    表  2  敌手攻击成功次数

    Table  2  Number of successful attacks by adversary

    交易次数 敌手成功次数 攻击成功概率
    原始方案 1 000 1 000 100 %
    优化方案 100 000 686 6.86 %
    下载: 导出CSV

    表  3  无背书节点情况发生次数

    Table  3  Frequency of nonoccurence of endorsing peer

    交易次数 是否使用计时重传 无背书节点情况发生次数
    1 000 2
    100 000 17
    1 000 0
    100 000 0
    下载: 导出CSV

    表  4  可验证随机函数各部分算法运行时间

    Table  4  Running time of each part of the VRF algorithm

    算法 次数 总时间 (ms) 平均时间 (ms)
    生成密钥 10000 2878.3546 0.2878
    生成随机数和证明 10000 10395.3927 1.0395
    验证随机数和证明 10000 12874.6190 1.2875
    下载: 导出CSV
  • [1] Nakamoto S. Bitcoin: A peer-to-peer electronic cash system [Online], available: https://bitcoin.org/bitcoin.pdf, December 17, 2019
    [2] 刘敖迪, 杜学绘, 王娜, 李少卓..区块链技术及其在信息安全领域的研究进展.软件学报, 2018, 29(7):2092-2115

    Liu Ao-Di, Du Xue-Hui, Wang Na, Li Shao-Zhuo. Research progress of blockchain technology and its application in information security. Journal of Software, 2018, 29(7):2092-2115
    [3] 韩璇, 袁勇, 王飞跃. 区块链安全问题:研究现状与展望. 自动化学报, 2019, 45(1): 206-225

    Han Xuan, Yuan Yong, Wang Fei-Yue. Security problems on blockchain: the state of the art and future trends. Acta Automatica Sinica, 2019, 45(1): 206-225.
    [4] Nguyen G T, Kim K. A survey about consensus algorithms used in blockchain. Journal of Information Processing Systems, 2018, 14(1). 101-128
    [5] Elli A, Artem B, Vita B, Christian C, Konstantinos C, Angelo D. Hyperledger fabric: A distributed operating system for permissioned blockchains. In: Proceedings of the Thirteenth EuroSys Conference. Porto, Portugal: ACM, 2018. 1−15
    [6] Vukolić M. Rethinking permissioned blockchains. In: Proceedings of the ACM Workshop on Blockchain, Cryptocurrencies and Contracts. Abu Dhabi, United Arab Emirates: ACM, 2017. 3−7
    [7] Bessani A, Sousa J, Vukolić M. A byzantine fault-tolerant ordering service for the Hyperledger Fabric blockchain platform. In: Proceedings of the Workshop on Scalable & Resilient Infrastructures for Distributed Ledgers. Luxembourg City, Luxembourg: IEEE, 2018. 51−58
    [8] 袁勇, 王飞跃. 区块链技术发展现状与展望. 自动化学报, 2016, 42(4): 481-494

    Yuan Yong, Wang Fei-Yue. Blockchain: The state of the art and future trends.Acta Automatica Sinica, 2016, 42(4):481-494
    [9] Bach L M, Mihaljevic B, Zagar M. Comparative analysis of blockchain consensus algorithms. In: Proceedings of the 41st International Convention on Information and Communication Technology, Electronics and Microelectronics (MIPRO). Opatija, Croatia: IEEE, 2018. 1545−1550
    [10] Lamport L, Shostak R, Pease M. The byzantine generals problem. Acm Transactions on Programming Languages & Systems, 1982, 4(3):382-401.
    [11] Lamport L. Paxos made simple. ACM Sigact News, 2001, 32(4): 18-25.
    [12] Ongaro D, Ousterhout J. In search of an understandable consensus algorithm. In: Proceedings of Usenix Conference on Usenix Technical Conference. Philadelphia, PA, USA: ACM, 2014. 305−319
    [13] 范捷, 易乐天, 舒继武. 拜占庭系统技术研究综述[J]. 软件学报, 2013, 24(6):1346-1360

    Fan Jie, Yi Le-Tian, Shu Ji-Wu. Research on the technologies of byzantine system. Journal of Software. 2013, 24(6):1346-1360
    [14] Castro M, Liskov B. Practical byzantine fault tolerance. In: Proceedings of the Third Symposium on Operating Systems Design and Implementation. New Orleans, Louisiana, USA: OSDI, 1999. 173−186
    [15] 袁勇, 倪晓春, 曾帅, 王飞跃. 区块链共识算法的发展现状与展望. 自动化学报, 2018, 44(11), 2011-2022

    Yuan Yong, Ni Xiao-Chun, Zeng Shuai, Wang Fei-Yue. Blockchain consensus algorithms: the state of the art and future trends. Acta Automatica Sinica, 2018, 44(11), 2011-2022
    [16] Bentov I, Lee C, Mizrahi A, Rosenfeld M. Proof of activity: Extending bitcoin' s proof of work via proof of stake [Online], available: http://eprint.iacr.org/2014/452, December 16, 2019
    [17] S King, S Nadal. PPCoin: Peer-to-peer crypto-currency with proofof-stake (whitepaper) [Online], available: https://bitcoin.peryaudo.org/vendor/peercoin-paper.pdf, December 17, 2019
    [18] Li W, Andreina S, Bohli J M, Karame G. Securing proof-of-stake blockchain protocols. In: Proceedings of Cryptocurrencies and Blockchain Technology. Barcelona, Spain: Springer, 2017. 297−315
    [19] Bitshares. Delegated proof of stake [Online], available: https://docs.bitshares.org/en/master/technology/dpos.html, December 17, 2019
    [20] Silvio M, Salil V, Michael R. Verifiable random functions. In: Proceedings of the 40th Annual Symposium on Foundations of Computer Science. New York, USA : IEEE, 1999. 120−130
    [21] Abdalla M, Catalano D, Fiore D. Verifiable random functions from identity-based key encapsulation. In: Proceedings of Annual International Conference on the Theory and Applications of Cryptographic Techniques. Cologne, Germany: Springer, 2009. 554−571
    [22] Gilad Y, Hemo R, Micali S, Vlachos G, Zeldovich K. Algorand: Scaling byzantine agreements for cryptocurrencies. In: Proceedings of the 26th Symposium on Operating Systems Principles. Shanghai, China: ACM, 2017. 51−68
    [23] Hanke T, Movahedi M, Williams D. Dfinity technology overview series, consensus system. arXiv preprint arXiv: 2018, 1805. 04548
    [24] Boneh D, Boyen X. Short signatures without random oracles. In: Proceedings of International conference on the theory and applications of cryptographic techniques. Interlaken, Switzerland: Springer, 2004. 56−73
    [25] Kiayias A, Russell A, David B, Oliynykov R. Ouroboros: A provably secure proof-of-stake blockchain protocol. In: Proceedings of Annual International Cryptology Conference. Paris, France: Springer, 2017. 357−388
    [26] David B, Gaži P, Kiayias A, Russell A. Ouroboros Praos: An adaptively-secure, semi-synchronous proof-of-stake blockchain. In: Proceedings of Annual International Conference on the Theory and Applications of Cryptographic Techniques. Tel Aviv, Israel: Springer, 2018. 66−98
    [27] Hearn M. Corda: A distributed ledger [Online], available: https://www.corda.net/content/corda-technical-whitepaper.pdf, December 17, 2019
    [28] Yamashita K, Nomura Y, Zhou E, Pi B, Jun S. Potential risks of Hyperledger Fabric smart contracts. In: Proceedings of the 2019 IEEE International Workshop on Blockchain Oriented Software Engineering (IWBOSE). Hangzhou, China: IEEE, 2019. 1−10
    [29] Manevich Y, Barger A, Tock Y. Endorsement in Hyperledger Fabric via service discovery. IBM Journal of Research and Development, 2019, 63(2):1-9
    [30] Brandenburger M, Cachin C, Kapitza R, Sorniotti A. blockchain and trusted computing: Problems, pitfalls, and a solution for Hyperledger Fabric. arXiv preprint arXiv, 2018, 1805. 08541
    [31] Sukhwani H, Wang N, Trivedi K S, Rindos A. Performance modeling of Hyperledger Fabric (permissioned blockchain network). In: Proceedings of the IEEE 17th International Symposium on Network Computing and Applications (NCA). Cambridge, MA, USA: IEEE, 2018. 1−8
    [32] Sukhwani H, Martínez J M, Chang X, Trivedi K, Rindos A. Performance modeling of pbft consensus process for permissioned blockchain network (hyperledger fabric). In: Proceedings of the IEEE 36th Symposium on Reliable Distributed Systems (SRDS). Hong Kong, China: IEEE, 2017. 253−255
    [33] Baliga A, Solanki N, Verekar S, Pednekar A, Kamat P, Chatterjee S. Performance characterization of Hyperledger Fabric. In: Proceedings of the 2018 Crypto Valley Conference on Blockchain Technology (CVCBT). Zug, Switzerland: IEEE, 2018. 65−74
    [34] Goldberg S, Reyzin L, Papadopoulos D, Vcelak J. Verifiable random functions (VRFs) [Online], available: https://datatracker.ietf.org/doc/draft-irtf-cfrg-vrf/, February 8, 2019
    [35] Boneh D, Lynn B, Shacham H. Short signatures from the Weil pairing. In: Proceedings of International Conference on the Theory and Application of Cryptology and Information Security. Gold Coast, Australia: Springer, 2001. 514−532
    [36] Carter J L, Wegman M N. Universal classes of hash functions. Journal of computer and system sciences, 1979, 18(2): 143-154 doi: 10.1016/0022-0000(79)90044-8
    [37] Nguyen T S L, Jourjon G, Potop-Butucaru M, Thai K L. Impact of network delays on Hyperledger Fabric. arXiv preprint arXiv: 2019. 1903. 08856
  • 加载中
图(7) / 表(4)
计量
  • 文章访问数:  4627
  • HTML全文浏览量:  3251
  • PDF下载量:  457
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-07-07
  • 录用日期:  2019-12-15
  • 网络出版日期:  2020-01-20
  • 刊出日期:  2021-08-20

目录

    /

    返回文章
    返回