[1]
|
国家制造强国建设战略咨询委员会. "绿皮书"助跑机器人—解读"中国制造2025"机器人领域技术路线图. 机器人产业, 2015, (5): 36−43National Manufacturing-Power-Construction-Strategy-Advisory-Committee. 《Made in China 2025》 technology roadmap in robotics. Robot Industry, 2015, (5): 36−43
|
[2]
|
黎宇科, 刘宇. 国内智能网联汽车发展现状及建议. 汽车与配件, 2016, (41): 56−59 doi: 10.3969/j.issn.1006-0162.2016.41.009Li Yu-Ke, Liu Yu. Development status and suggestions of intelligent networked automobile in China. Automobile & Parts, 2016, (41): 56−59 doi: 10.3969/j.issn.1006-0162.2016.41.009
|
[3]
|
陈虹, 郭露露, 边宁. 对汽车智能化进程及其关键技术的思考. 科技导报, 2017, 35(11): 52−59Chen Hong, Guo Lu-Lu, Bian Ning. On automobile intelligentization and key technologies. Science & Technology Review, 2017, 35(11): 52−59
|
[4]
|
陈虹, 宫洵, 胡云峰, 刘奇芳, 高炳钊, 郭洪艳. 汽车控制的研究现状与展望. 自动化学报, 2013, 39(4): 322−346 doi: 10.1016/S1874-1029(13)60033-6Chen Hong, Gong Xun, Hu Yun-Feng, Liu Qi-Fang, Gao Bing-Zhao, Guo Hong-Yan. Automotive control: the state of the art and perspective. Acta Automatica Sinica, 2013, 39(4): 322−346 doi: 10.1016/S1874-1029(13)60033-6
|
[5]
|
Deur J, Pavkovic D, Peric N, Jansz M, Hrovat D. An electronic throttle control strategy including compensation of friction and limp-home effects. IEEE Transactions on Industry Applications, 2004, 40(3): 821−834 doi: 10.1109/TIA.2004.827441
|
[6]
|
胡云峰, 李超, 李骏, 郭洪艳, 孙鹏远, 陈虹. 基于观测器的输出反馈电子节气门控制器设计. 自动化学报, 2011, 37(6): 746−754Hu Yun-Feng, Li Chao, Li Jun, Guo Hong-Yan, Sun Peng-Yuan, Chen Hong. Observer-based output feedback control of electronic throttles. Acta Automatica Sinica, 2011, 37(6): 746−754
|
[7]
|
Powell J D, Fekete N P, Chang C F. Observer-based air fuel ratio control. IEEE Control Systems Magazine, 1998, 18(5): 72−83 doi: 10.1109/37.722254
|
[8]
|
Zhu G G, Haskara I, Winkelman I. Closed-loop ignition timing control for SI engines using ionization current feedback. IEEE Transactions on Control Systems Technology, 2007, 15(3): 416−427 doi: 10.1109/TCST.2007.894634
|
[9]
|
Hrovat D, Sun J. Models and control methodologies for IC engine idle speed control design. Control Engineering Practice, 1997, 5(8): 1093−1100 doi: 10.1016/S0967-0661(97)00101-9
|
[10]
|
Gerhardt J, Hönninger H, Bischof H. A New Approach to Functional and Software Structure for Engine Management Systems-BOSCH ME7, SAE Technical Paper 980801, SAE, 1998
|
[11]
|
Ravi N, Liao H H, Jungkunz A F, Song H H, Gerdes J C. Modeling and control of exhaust recompression HCCI: split fuel injection for cylinder-individual combustion control. IEEE Control Systems Magazine, 2012, 32(4): 26−42 doi: 10.1109/MCS.2012.2194840
|
[12]
|
Qiu Z, Santillo M, Jankovic M, Sun J. Composite adaptive internal model control and its application to boost pressure control of a turbocharged gasoline engine. IEEE Transactions on Control Systems Technology, 2015, 23(6): 2306−2315 doi: 10.1109/TCST.2015.2414400
|
[13]
|
Hu Y F, Chen H, Wang P, Chen H, Ren L Q. Nonlinear model predictive controller design based on learning model for turbocharged gasoline engine of passenger vehicle. Mechanical Systems and Signal Processing, 2018, 109: 74−88 doi: 10.1016/j.ymssp.2018.02.012
|
[14]
|
Hsieh M F, Wang J M. Development and experimental studies of a control-oriented SCR model for a two-catalyst urea-SCR system. Control Engineering Practice, 2011, 19(4): 409−422 doi: 10.1016/j.conengprac.2011.01.004
|
[15]
|
Cook J A, Sun J, Buckland J H, Kolmanovsky I V, Peng H, Grizzle J W. Automotive powertrain control — A survey. Asian Journal of Control, 2006, 8(3): 237−260
|
[16]
|
Glielmo L, Iannelli L, Vacca V, Vasca F. Gearshift control for automated manual transmissions. IEEE/ASME Transactions on Mechatronics, 2006, 11(1): 17−26 doi: 10.1109/TMECH.2005.863369
|
[17]
|
Szabo T, Buchholz M, Dietmayer K. Optimal control of a gearshift with a dual-clutch transmission. In: Proceedings of ASME 2011 Dynamic Systems and Control Conference and Bath/ASME Symposium on Fluid Power and Motion Control. Arlington, USA: ASME, 2011. 751−756
|
[18]
|
Tepeš B, Kasać J, Deur J. Optimal control of automated transmission engagement process. In: Proceedings of the 2012 IEEE International Conference on Control Applications. Dubrovnik, Croatia: IEEE, 2012. 329−335
|
[19]
|
Gao B Z, Liang Q, Xiang Y, Guo L L, Chen H. Gear ratio optimization and shift control of 2-speed I-AMT in electric vehicle. Mechanical Systems and Signal Processing, 2015, 50(1): 615−631 doi: 10.1016/j.ymssp.2014.05.045
|
[20]
|
Guo L L, Gao B Z, Chen H. Online shift schedule optimization of 2-speed electric vehicle using moving horizon strategy. IEEE/ASME Transactions on Mechatronics, 2016, 21(6): 2858−2869 doi: 10.1109/TMECH.2016.2586503
|
[21]
|
Sciarretta A, Guzzella L. Control of hybrid electric vehicles. IEEE Control Systems Magazine, 2007, 27(2): 60−70 doi: 10.1109/MCS.2007.338280
|
[22]
|
Zhao H Y, Ren B T, Chen H, Deng W W. Model predictive control allocation for stability improvement of four-wheel drive electric vehicles in critical driving condition. IET Control Theory & Applications, 2015, 9(18): 2688−2696
|
[23]
|
Xiang W D, Richardson P C, Zhao C M, Mohammad S. Automobile brake-by-wire control system design and analysis. IEEE Transactions on Vehicular Technology, 2008, 57(1): 138−145 doi: 10.1109/TVT.2007.901895
|
[24]
|
韩伟, 熊璐, 侯一萌, 余卓平. 基于线控制动系统的车辆横摆稳定性优化控制. 同济大学学报(自然科学版), 2017, 45(5): 732−740Han Wei, Xiong Lu, Hou Yi-Meng, Yu Zhuo-Ping. Vehicle yaw stability optimized control based on brake by wire system. Journal of Tongji University (Natural Science), 2017, 45(5): 732−740
|
[25]
|
Zhang J, Ioannou P A. Longitudinal control of heavy trucks in mixed traffic: environmental and fuel economy considerations. IEEE Transactions on Intelligent Transportation System, 2006, 7(1): 92−104 doi: 10.1109/TITS.2006.869597
|
[26]
|
Li S E, Jia Z Z, Li K Q, Cheng B. Fast online computation of a model predictive controller and its application to fuel economy-oriented adaptive cruise control. IEEE Transactions on Intelligent Transportation Systems, 2015, 16(3): 1199−1209 doi: 10.1109/TITS.2014.2354052
|
[27]
|
Yamamura Y, Tabe M, Kanehira M, Murakami T. Development of an Adaptive Cruise Control System with Stop-and-Go Capability, SAE Technical Paper 2001-01-0798, SAE, 2001
|
[28]
|
Zhao D B, Hu Z H, Xia Z P, Alippi C, Zhu Y H, Wang D. Full-range adaptive cruise control based on supervised adaptive dynamic programming. Neurocomputing, 2014, 125: 57−67 doi: 10.1016/j.neucom.2012.09.034
|
[29]
|
Glaser H. Electronic Stability Program ESP. Lycksele, Sweden: Audi Press Presentation, 1996. 13
|
[30]
|
Kremer M A. The electronic stability program (ESP) on the ford focus. In: Proceedings of 2000 European Conference on Vehicle Electronic Systems. Stratford-upon-Avon, UK: Vehicle Electronic Systems, 2000.
|
[31]
|
盛勇鑫. 轿车侧向稳定性控制算法研究[硕士学位论文], 吉林大学, 中国, 2008Sheng Yong-Xin. Study on Lateral Stability Control Strategy for Car [Master thesis], Jilin University, China, 2008
|
[32]
|
Yim S, Park Y, Yi K. Design of active suspension and electronic stability program for rollover prevention. International Journal of Automotive Technology, 2010, 11(2): 147−153 doi: 10.1007/s12239-010-0020-6
|
[33]
|
曹阳, 贺登博, 喻凡, 罗哲. 基于主动转向的车辆路径跟随广义预测控制. 上海交通大学学报, 2016, 50(3): 401−406Cao Yang, He Deng-Bo, Yu Fan, Luo Zhe. Generalized predictive control based on vehicle path following strategy by using active steering system. Journal of Shanghai Jiaotong University, 2016, 50(3): 401−406
|
[34]
|
刘成恩. 汽车主动转向系统设计及控制特性研究[硕士学位论文], 重庆交通大学, 中国, 2017Liu Cheng-En. Research on the Design and Control Features of the Automobile Active Front Steering [Master dissertation], Chongqing Jiaotong University, China, 2017
|
[35]
|
曹阳. 基于驾驶员模型的车辆主动转向控制研究[博士学位论文], 上海交通大学, 中国, 2016Cao Yang. Study of Vehicle Active Steering Control Based on Driver Model [Ph. D. dissertation], Shanghai Jiaotong University, China, 2016
|
[36]
|
宗长富, 李刚, 郑宏宇, 张泽星. 线控汽车底盘控制技术研究进展及展望. 中国公路学报, 2013, 26(2): 160−176 doi: 10.3969/j.issn.1001-7372.2013.02.023Zong Chang-Fu, Li Gang, Zheng Hong-Yu, Zhang Ze-Xing. Study progress and outlook of chassis control technology for X-by-wire automobile. China Journal of Highway and Transport, 2013, 26(2): 160−176 doi: 10.3969/j.issn.1001-7372.2013.02.023
|
[37]
|
何磊. 基于FlexRay总线的线控转向系统双电机控制方法研究[博士学位论文], 吉林大学, 中国, 2011He Lei. Research on Dual-motor Control Method Based on FlexRay Bus for Steering-by-Wire Automobile [Ph. D. dissertation], Jilin University, China, 2011
|
[38]
|
宗长富, 韩衍东, 何磊, 王祥. 汽车线控转向变角传动比特性研究. 中国公路学报, 2015, 28(9): 115−120 doi: 10.3969/j.issn.1001-7372.2015.09.015Zong Chang-Fu, Han Yan-Dong, He Lei, Wang Xiang. Research on variable angle transmission ratio characteristics for automobile with SBW. China Journal of Highway and Transport, 2015, 28(9): 115−120 doi: 10.3969/j.issn.1001-7372.2015.09.015
|
[39]
|
Wu X D, Zhang M M, Xu M, Kakogawa Y. Adaptive feedforward control of a steer-by-wire system by online parameter estimator. International Journal of Automotive Technology, 2018, 19(1): 159−166 doi: 10.1007/s12239-018-0015-2
|
[40]
|
吴蒙, 张飞铁, 文桂林. 无人驾驶汽车线控转向系统控制策略的研究. 计算机仿真, 2016, 33(12): 163−168 doi: 10.3969/j.issn.1006-9348.2016.12.034Wu Meng, Zhang Fei-Tie, Wen Gui-Lin. The control strategy research of unmanned vehicles steering-by-wire system. Computer Simulation, 2016, 33(12): 163−168 doi: 10.3969/j.issn.1006-9348.2016.12.034
|
[41]
|
柳长春, 都东, 潘际銮. 基于小偏差模型预测的车道保持辅助控制. 清华大学学报(自然科学版), 2015, 55(10): 1087−1092Liu Chang-Chun, Du Dong, Pan Ji-Luan. Predictive control for lane control systems using a small deviation model. Journal of Tsinghua University (Science and Technology), 2015, 55(10): 1087−1092
|
[42]
|
任殿波, 崔胜民, 吴杭哲. 车道保持预瞄控制及其稳态误差分析. 汽车工程, 2016, 38(2): 192−199 doi: 10.3969/j.issn.1000-680X.2016.02.010Ren Dian-Bo, Cui Sheng-Min, Wu Hang-Zhe. Preview control for lane keeping and its steady-state error analysis. Automotive Engineering, 2016, 38(2): 192−199 doi: 10.3969/j.issn.1000-680X.2016.02.010
|
[43]
|
郭孔辉, 姜辉, 张建伟, 丁海涛. 基于模糊逻辑的自动平行泊车转向控制器. 吉林大学学报(工学版), 2009, 39(S2): 236−240Guo Kong-Hui, Jiang Hui, Zhang Jian-Wei, Ding Hai-Tao. Automatic parallel parking steering controller based on fuzzy logic control theory. Journal of Jilin University (Engineering and Technology Edition), 2009, 39(S2): 236−240
|
[44]
|
Crolla D A, Cao D P. The impact of hybrid and electric powertrains on vehicle dynamics, control systems and energy regeneration. Vehicle System Dynamics, 2012, 50(S1): 95−109
|
[45]
|
Pinto L. Advance Yaw Motion Control of a Hybrid Vehicle Using Twin Rear Electric Motors. AVEC, 2010
|
[46]
|
陈慧, 高博麟, 徐帆. 车辆质心侧偏角估计综述. 机械工程学报, 2013, 49(24): 76−94 doi: 10.3901/JME.2013.24.076Chen Hui, Gao Bo-Lin, Xu Fan. Review on vehicle sideslip angle estimation. Journal of Mechanical Engineering, 2013, 49(24): 76−94 doi: 10.3901/JME.2013.24.076
|
[47]
|
郭洪艳, 陈虹, 赵海艳, 杨斯琦. 汽车行驶状态参数估计研究进展与展望. 控制理论与应用, 2013, 30(6): 661−672 doi: 10.7641/CTA.2013.21190Guo Hong-Yan, Chen Hong, Zhao Hai-Yan, Yang Si-Qi. State and parameter estimation for running vehicle: recent developments and perspective. Control Theory & Applications, 2013, 30(6): 661−672 doi: 10.7641/CTA.2013.21190
|
[48]
|
Rajamani R, Piyabongkarn D N. New paradigms for the integration of yaw stability and rollover prevention functions in vehicle stability control. IEEE Transactions on Intelligent Transportation Systems, 2013, 14(1): 249−261 doi: 10.1109/TITS.2012.2215856
|
[49]
|
Mokhiamar O, Abe M. How the four wheels should share forces in an optimum cooperative chassis control. Control Engineering Practice, 2006, 14(3): 295−304 doi: 10.1016/j.conengprac.2005.03.023
|
[50]
|
Nagai M, Shino M, Gao F. Study on integrated control of active front steer angle and direct yaw moment. JSAE Review, 2002, 23(3): 309−315 doi: 10.1016/S0389-4304(02)00189-3
|
[51]
|
高晓杰, 余卓平, 张立军. 基于车辆状态识别的AFS与ESP协调控制研究. 汽车工程, 2007, 29(4): 283−291 doi: 10.3321/j.issn:1000-680X.2007.04.005Gao Xiao-Jie, Yu Zhuo-Ping, Zhang Li-Jun. Coordinated control of AFS and ESP based on vehicle state identification. Automotive Engineering, 2007, 29(4): 283−291 doi: 10.3321/j.issn:1000-680X.2007.04.005
|
[52]
|
Cho W, Yoon J, Kim J, Hur J, Yi K. An investigation into unified chassis control scheme for optimised vehicle stability and manoeuvrability. Vehicle System Dynamics, 2008, 46(S1): 87−105
|
[53]
|
冀杰, 李以农, 郑玲, 赵树恩. 车辆自动驾驶系统纵向和横向运动综合控制. 中国公路学报, 2010, 23(5): 119−126 doi: 10.3969/j.issn.1001-7372.2010.05.019Ji Jie, Li Yi-Nong, Zheng Ling, Zhao Shu-En. Integrated control of longitudinal and lateral motion for autonomous vehicle driving system. China Journal of Highway and Transport, 2010, 23(5): 119−126 doi: 10.3969/j.issn.1001-7372.2010.05.019
|
[54]
|
Katriniok A, Maschuw J P, Christen F, Eckstein L, Abel D. Optimal vehicle dynamics control for combined longitudinal and lateral autonomous vehicle guidance. In: Proceedings of the 2013 European Control Conference (ECC). Zurich, Switzerland: IEEE, 2013. 974−979
|
[55]
|
Xu L H, Wang Y Z, Sun H B, Xin J M, Zheng N N. Integrated longitudinal and lateral control for Kuafu-Ⅱ autonomous vehicle. IEEE Transactions on Intelligent Transportation Systems, 2016, 17(7): 2032−2041 doi: 10.1109/TITS.2015.2498170
|
[56]
|
Nunes A, Reimer B, Coughlin J F. People must retain control of autonomous vehicles. Nature, 2018, 556(7700): 169−171 doi: 10.1038/d41586-018-04158-5
|
[57]
|
Liu Y H, Fan X Q, Lv C, Wu J, Li L, Ding D W. An innovative information fusion method with adaptive Kalman filter for integrated INS/GPS navigation of autonomous vehicles. Mechanical Systems and Signal Processing, 2018, 100: 605−616 doi: 10.1016/j.ymssp.2017.07.051
|
[58]
|
陆炳华, 刘婷, 张海滨. 智能驾驶汽车传感器介绍及布置. 上海汽车, 2017, (11): 40−43 doi: 10.3969/j.issn.1007-4554.2017.11.10Lu Bing-Hua, Liu Ting, Zhang Hai-Bin. Introduction and layout of sensors for intelligent driving cars. Shanghai Auto, 2017, (11): 40−43 doi: 10.3969/j.issn.1007-4554.2017.11.10
|
[59]
|
马国成. 车辆自适应巡航跟随控制技术研究[博士学位论文], 北京理工大学, 中国, 2014Ma Guo-Cheng. Research on the Adaptive Cruise Control Tracking System Applied for Motor vehicles [Ph. D. dissertation], Beijing Institute of Technology, China, 2014
|
[60]
|
Kuo Y C, Pai N S, Li Y F. Vision-based vehicle detection for a driver assistance system. Computers & Mathematics with Applications, 2011, 61(8): 2096−2100
|
[61]
|
Takeuchi E, Yoshihara Y, Yoshiki N. Blind area traffic prediction using high definition maps and LiDAR for safe driving assist. In: Proceedings of the 2015 IEEE 18th International Conference on Intelligent Transportation Systems. Las Palmas, Spain: IEEE, 2015. 2311−2316
|
[62]
|
Heimberger M, Horgan J, Hughes C, McDonald J, Yogamani S. Computer vision in automated parking systems: design, implementation and challenges. Image and Vision Computing, 2017, 68: 88−101 doi: 10.1016/j.imavis.2017.07.002
|
[63]
|
Jung H G, Cho Y H, Yoon P J, Kim J. Scanning laser radar-based target position designation for parking aid system. IEEE Transactions on Intelligent Transportation Systems, 2008, 9(3): 406−424 doi: 10.1109/TITS.2008.922980
|
[64]
|
孙宁, 秦洪懋, 张利, 葛如海. 基于多传感器信息融合的车辆目标识别方法. 汽车工程, 2017, 39(11): 1310−1315Sun Ning, Qin Hong-Mao, Zhang Li, Ge Ru-Hai. Vehicle target recognition based on multi-sensor information fusion. Automotive Engineering, 2017, 39(11): 1310−1315
|
[65]
|
Möbus R, Baotic M, Morari M. Multi-object adaptive cruise control. In: Proceedings of the 6th International Workshop on Hybrid Systems: Computation and Control. Prague, Czech Republic: Springer, 2003. 359−374
|
[66]
|
Cheng H, Zheng N N, Zhang X T, Qin J J, Van De Wetering H. Interactive road situation analysis for driver assistance and safety warning systems: framework and algorithms. IEEE Transactions on Intelligent Transportation Systems, 2007, 8(1): 157−167 doi: 10.1109/TITS.2006.890073
|
[67]
|
Paden B, Čáp M, Yong S Z, Yershov, D, Frazzoli E. A survey of motion planning and control techniques for self-driving urban vehicles. IEEE Transactions on Intelligent Vehicles, 2016, 1(1): 33−55 doi: 10.1109/TIV.2016.2578706
|
[68]
|
Kanayama Y J, Hartman B I. Smooth local-path planning for autonomous vehicles. The International Journal of Robotics Research, 1997, 16(3): 263−284 doi: 10.1177/027836499701600301
|
[69]
|
冯来春. 基于引导域的参数化RRT无人驾驶车辆运动规划算法研究[硕士学位论文], 中国科学技术大学, 中国, 2017Feng Lai-Chun. Research on Autonomous Vehicle Motion Planning Method Using Parameterized RRT Based on Guiding Area [Master thesis], University of Science and Technology of China, China, 2017
|
[70]
|
苏锑, 杨明, 王春香, 唐卫, 王冰. 一种基于分类回归树的无人车汇流决策方法. 自动化学报, 2018, 44(1): 35−43Su Ti, Yang Ming, Wang Chun-Xiang, Tang Wei, Wang Bing. Classification and regression tree based traffic merging for method self-driving vehicles. Acta Automatica Sinica, 2018, 44(1): 35−43
|
[71]
|
Furda A, Vlacic L. Enabling safe autonomous driving in real-world city traffic using multiple criteria decision making. IEEE Intelligent Transportation Systems Magazine, 2011, 3(1): 4−17 doi: 10.1109/MITS.2011.940472
|
[72]
|
Ishikawa K, Fujinami T, Sakurai A. Integration of constraint logic programming and artificial neural networks for driving robots. In: Proceedings of the 2001 IEEE/RSJ International Conference on Intelligent Robots and Systems. Expanding the Societal Role of Robotics in the Next Millennium. Maui, USA: IEEE, 2001. 1011−1016
|
[73]
|
Chong L S, Abbas M M, Flintsch A M, Higgs B. A rule-based neural network approach to model driver naturalistic behavior in traffic. Transportation Research Part C: Emerging Technologies, 2013, 32: 207−223 doi: 10.1016/j.trc.2012.09.011
|
[74]
|
许骏, 李一兵. 基于Markov决策过程的驾驶员行为模型. 汽车工程, 2008, 30(1): 14−16, 60 doi: 10.3321/j.issn:1000-680X.2008.01.003Xu Jun, Li Yi-Bing. A driver behavior model based on Markov decision processes. Automotive Engineering, 2008, 30(1): 14−16, 60 doi: 10.3321/j.issn:1000-680X.2008.01.003
|
[75]
|
王娟, 朱庆保, 崔靖. 复杂环境下基于贝叶斯决策的机器人路径规划. 计算机工程与应用, 2012, 48(2): 245−248 doi: 10.3778/j.issn.1002-8331.2012.02.070Wang Juan, Zhu Qing-Bao, Cui Jing. Robot path planning based on Bayes decision in complex environment. Computer Engineering and Applications, 2012, 48(2): 245−248 doi: 10.3778/j.issn.1002-8331.2012.02.070
|
[76]
|
Ulbrich S, Maurer M. Probabilistic online POMDP decision making for lane changes in fully automated driving. In: Proceedings of the 16th International IEEE Conference on Intelligent Transportation Systems (ITSC 2013). The Hague, Netherlands: IEEE, 2013. 2063−2067
|
[77]
|
Brechtel S, Gindele T, Dillmann R. Probabilistic decision-making under uncertainty for autonomous driving using continuous POMDPs. In: Proceedings of the 17th International IEEE Conference on Intelligent Transportation Systems (ITSC). Qingdao, China: IEEE, 2014. 392−399
|
[78]
|
Havlak F, Campbell M. Discrete and continuous, probabilistic anticipation for autonomous robots in urban environments. IEEE Transactions on Robotics, 2014, 30(2): 461−474 doi: 10.1109/TRO.2013.2291620
|
[79]
|
Tran Q, Firl J. Modelling of traffic situations at urban intersections with probabilistic non-parametric regression. In: Proceedings of the 2013 IEEE Intelligent Vehicles Symposium (IV). Gold Coast, Australia: IEEE, 2013. 334−339
|
[80]
|
Friedman J H. An overview of predictive learning and function approximation. From Statistics to Neural Networks: Theory and Pattern Recognition Applications. Berlin Heidelberg: Springer, 1994. 1−61
|
[81]
|
Osborne M J, Rubinstein A. A Course in Game Theory. Cambridge: MIT Press, 1994.
|
[82]
|
Graves A, Wayne G, Reynolds M, Harley T, Danihelka I, Grabska-Barwińska A, et al. Hybrid computing using a neural network with dynamic external memory. Nature, 2016, 538(7626): 471−476 doi: 10.1038/nature20101
|
[83]
|
Arulampalam M S, Maskell S, Gordon N, Clapp T. A tutorial on particle filters for online nonlinear/non-Gaussian Bayesian tracking. IEEE Transactions on Signal Processing, 2002, 50(2): 174−188 doi: 10.1109/78.978374
|
[84]
|
Ando N, Fujimoto H. Yaw-rate control for electric vehicle with active front/rear steering and driving/braking force distribution of rear wheels. In: Proceedings of the 11th IEEE International Workshop on Advanced Motion Control (AMC). Nagaoka, Niigata, Japan: IEEE, 2010. 726−731
|
[85]
|
Wang F, Chen H, Guo H Y, Cao D P. Constrained H∞ control for road vehicles after a tire blow-out. Mechatronics, 2015, 30: 371−382 doi: 10.1016/j.mechatronics.2014.12.007
|
[86]
|
Wang F, Chen H, Cao D P. Nonlinear coordinated motion control of road vehicles after a tire blowout. IEEE Transactions on Control Systems Technology, 2016, 24(3): 956−970 doi: 10.1109/TCST.2015.2472982
|
[87]
|
Wang F, Chen H, Guo K H, Cao D P. A novel integrated approach for path following and directional stability control of road vehicles after a tire blow-out. Mechanical Systems and Signal Processing, 2017, 93: 431−444 doi: 10.1016/j.ymssp.2017.02.016
|
[88]
|
王菲, 刘柏楠, 郭洪艳, 陈虹. 爆胎汽车的轨迹跟踪与稳定性控制. 电机与控制学报, 2013, 17(11): 97−104 doi: 10.3969/j.issn.1007-449X.2013.11.015Wang Fei, Liu Bai-Nan, Guo Hong-Yan, Chen Hong. Trajectory tracking and stability control for vehicle after tire blow-out. Electric Machines and Control, 2013, 17(11): 97−104 doi: 10.3969/j.issn.1007-449X.2013.11.015
|
[89]
|
Shen X M, Yu F. Investigation on integrated vehicle chassis control based on vertical and lateral tyre behaviour correlativity. Vehicle System Dynamics, 2006, 44(S1): 506−519
|
[90]
|
Song J. Integrated control of brake pressure and rear-wheel steering to improve lateral stability with fuzzy logic. International Journal of Automotive Technology, 2012, 13(4): 563−570 doi: 10.1007/s12239-012-0054-z
|
[91]
|
李勇. 无信号灯十字交叉口协作车辆控制研究[硕士学位论文], 北京理工大学, 中国, 2015Li Yong. Research on Multi-Vehicle Cooperation and Control in an Intersection without Traffic Light [Master thesis], Beijing Institute of Technology, China, 2015
|
[92]
|
Kawabe T, Nishira H, Ohtsuka T. An optimal path generator using a receding horizon control scheme for intelligent automobiles. In: Proceedings of the 2004 IEEE International Conference on Control Applications. Taipei, China: IEEE, 2004. 1597−1602
|
[93]
|
Glaser S, Vanholme B, Mammar S, Gruyer D, Nouvelière L. Maneuver-based trajectory planning for highly autonomous vehicles on real road with traffic and driver interaction. IEEE Transactions on Intelligent Transportation Systems, 2010, 11(3): 589−606 doi: 10.1109/TITS.2010.2046037
|
[94]
|
Koo Y, Kim J, Han W. A method for driving control authority transition for cooperative autonomous vehicle. In: Proceedings of the 2015 IEEE Intelligent Vehicles Symposium (IV). Seoul, South Korea: IEEE, 2015. 394−399
|
[95]
|
胡云峰, 曲婷, 刘俊, 施竹清, 朱冰, 曹东璞, 等. 智能汽车人机协同控制的研究现状与展望. 自动化学报, 2019, 45(7): 1261−1280Hu Yun-Feng, Qu Ting, Liu Jun, Shi Zhu-Qing, Zhu Bing, Cao Dong-Pu, et al. Human-machine cooperative control of intelligent vehicle: recent developments and future Perspectives. Acta Automatica Sinica, 2019, 45(7): 1261−1280
|
[96]
|
Xu F, Chen H, Gong X, Mei Q. Fast nonlinear model predictive control on FPGA using particle swarm optimization. IEEE Transactions on Industrial Electronics, 2016, 63(1): 310−321 doi: 10.1109/TIE.2015.2464171
|
[97]
|
Whaiduzzaman M, Sookhak M, Gani A, Buyya R. A survey on vehicular cloud computing. Journal of Network and Computer Applications, 2014, 40: 325−344 doi: 10.1016/j.jnca.2013.08.004
|
[98]
|
Yang M, Otterness N, Amert T, Bakita J, Anderson J H, Smith F D. Avoiding pitfalls when using NVIDIA GPUs for real-time tasks in autonomous systems. In: Proceedings of the 30th Euromicro Conference on Real-Time Systems (ECRTS 2018). Dagstuhl, Germany: Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik, 2018. 1−21
|
[99]
|
Jalali H, Hinton K, Ayre R, Alpcan T, Tucker R S. Fog computing may help to save energy in cloud computing. IEEE Journal on Selected Areas in Communications, 2016, 34(5): 1728−1739 doi: 10.1109/JSAC.2016.2545559
|
[100]
|
Shi W J, Alawieh M B, Li X, Yu H F. Algorithm and hardware implementation for visual perception system in autonomous vehicle: a survey. Integration, 2017, 59: 148−156 doi: 10.1016/j.vlsi.2017.07.007
|
[101]
|
Abadi M, Barham P, Chen J M, Chen Z F, Davis A, Dean J, et al. TensorFlow: a system for large-scale machine learning. In: Proceedings of the 12th USENIX Conference on Operating Systems Design and Implementation. Savannah, USA: ACM, 2016. 265−283
|
[102]
|
Cheng L, Henty B E, Stancil D D, Bai F, Mudalige P. Mobile vehicle-to-vehicle narrow-band channel measurement and characterization of the 5.9 GHz dedicated short range communication (DSRC) frequency band. IEEE Journal on Selected Areas in Communications, 2007, 25(8): 1501−1516
|
[103]
|
Vaezi M, Ding Z G, Poor V. Multiple Access Techniques for 5G Wireless Networks and Beyond. Cham: Springer, 2019.
|
[104]
|
《中国公路学报》编辑部. 中国汽车工程学术研究综述·2017. 中国公路学报, 2017, 30(6): 1−197 doi: 10.3969/j.issn.1001-7372.2017.06.001Editorial Department of China Journal of Highway and Transport. Review on China’s automotive engineering research progress: 2017. China Journal of Highway and Transport, 2017, 30(6): 1−197 doi: 10.3969/j.issn.1001-7372.2017.06.001
|
[105]
|
Wang W, Liu Z Y, Xie R R. Quadratic extended Kalman filter approach for GPS/INS integration. Aerospace Science and Technology, 2006, 10(8): 709−713 doi: 10.1016/j.ast.2006.03.003
|
[106]
|
Liu Y H, Fan X Q, Lv C, Wu J, Li L, Ding D W. An innovative information fusion method with adaptive Kalman filter for integrated INS/GPS navigation of autonomous vehicles. Mechanical Systems and Signal Processing, 2018, 100: 605−616 doi: 10.1016/j.ymssp.2017.07.051
|
[107]
|
Hinton G E, Osindero S, Teh Y W. A fast learning algorithm for deep belief nets. Neural Computation, 2006, 18(7): 1527−1554 doi: 10.1162/neco.2006.18.7.1527
|
[108]
|
Jaradat M A K, Abdel-Hafez M F. Enhanced, delay dependent, intelligent fusion for INS/GPS navigation system. IEEE Sensors Journal, 2014, 14(5): 1545−1554 doi: 10.1109/JSEN.2014.2298896
|
[109]
|
Ren S Q, He K M, Girshick R, Sun J. Faster R-CNN: towards real-time object detection with region proposal networks. In: Proceedings of the 28th Conference on Neural Information Processing Systems. Cambridge, UK: MIT Press: ACM, 2015. 91−99
|
[110]
|
Bojarski M, Del Testa D, Dworakowski D, Firner B, Flepp B, Goyal P, Jackel L D, et al. End to end learning for self-driving cars. Arxiv Preprint Arxiv: 1604.07316, 2016.
|
[111]
|
Bojarski M, Yeres P, Choromanska A, Choromanski K, Firner B, Jackel L, et al. Explaining how a deep neural network trained with end-to-end learning steers a car. arXiv preprint arXiv: 1704.07911, 2017.
|
[112]
|
Kim J, Park C. End-to-end ego lane estimation based on sequential transfer learning for self-driving cars. In: Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition Workshops (CVPRW). Honolulu, USA: IEEE, 2017. 1194−1202
|
[113]
|
Sallab A E, Abdou M, Perot E, Yogamani S. End-to-end deep reinforcement learning for lane keeping assist. arXiv preprint arXiv: 1612.04340, 2016.
|
[114]
|
Brechtel S, Gindele T, Dillmann R. Probabilistic MDP-behavior planning for cars. In: Proceedings of the 14th International IEEE Conference on Intelligent Transportation Systems (ITSC). Washington, USA: IEEE, 2011. 1537−1542
|
[115]
|
Galceran E, Cunningham A G, Eustice R M, Olson E. Multipolicy decision-making for autonomous driving via changepoint-based behavior prediction: theory and experiment. Autonomous Robots, 2017, 41(6): 1367−1382 doi: 10.1007/s10514-017-9619-z
|
[116]
|
Zhang Y X, Gao B Z, Guo L L, Chen H, Zhao J H. Velocity control in a right-turn across traffic scenario for autonomous vehicles using kernel-based reinforcement learning. In: Proceedings of the 2017 Chinese Automation Congress (CAC). Jinan, China: IEEE, 2017. 6211−6216
|
[117]
|
Zhu Q, Huang Z H, Sun Z P, Liu D X, Dai B. Reinforcement learning based throttle and brake control for autonomous vehicle following. In: Proceedings of the 2017 Chinese Automation Congress (CAC). Jinan, China: IEEE, 2017. 6657−6662
|
[118]
|
Huang Z H, Xu X, He H B, Tan J, Sun Z P. Parameterized batch reinforcement learning for longitudinal control of autonomous land vehicles. IEEE Transactions on Systems, Man, and Cybernetics: Systems, 2019, 49(4): 730−741 doi: 10.1109/TSMC.2017.2712561
|
[119]
|
Xu N Y, Tan B W, Kong B Y. Autonomous driving in reality with reinforcement learning and image translation. arXiv preprint arXiv: 1801.05299, 2018.
|
[120]
|
Sadigh D, Sastry S, Seshia S A, Dragan A D. Planning for autonomous cars that leverage effects on human actions. Robotics: Science and Systems. Ann Arbor, MI, USA, 2016. 2
|
[121]
|
Bieshaar M, Reitberger G, Kreß V, Zernetsch S, Doll K, Fuchs E, et al. Highly automated learning for improved active safety of vulnerable road users. arXiv preprint arXiv: 1803.03479, 2018.
|
[122]
|
Tian Y C, Pei K X, Jana S, Ray B. DeepTest: automated testing of deep-neural-network-driven autonomous cars. In: Proceedings of the 40th International Conference on Software Engineering. Gothenburg, Sweden: ACM, 2018. 303−314
|
[123]
|
段艳杰, 吕宜生, 张杰, 赵学亮, 王飞跃. 深度学习在控制领域的研究现状与展望. 自动化学报, 2016, 42(5): 643−654Duan Yan-Jie, Lv Yi-Sheng, Zhang Jie, Zhao Xue-Liang, Wang Fei-Yue. Deep learning for control: the state of the art and prospects. Acta Automatica Sinica, 2016, 42(5): 643−654
|
[124]
|
Mnih V, Kavukcuoglu K, Silver D, Rusu A A, Veness J, Bellemare M G, et al. Human-level control through deep reinforcement learning. Nature, 2015, 518(7540): 529−533 doi: 10.1038/nature14236
|
[125]
|
陈虹. 模型预测控制. 北京: 中国科学出版社, 2013.Chen Hong. Model Predictive Control. Beijing: China Science Press, 2013.
|
[126]
|
Hrovat D. MPC-based idle speed control for IC engines. In: Proceedings of 1996 FISITA Conference. 1996.
|
[127]
|
Huang M, Zaseck K, Butts K, Kolmanovsky I. Rate-based model predictive controller for diesel engine air path: design and experimental evaluation. IEEE Transactions on Control Systems Technology, 2016, 24(6): 1922−1935 doi: 10.1109/TCST.2016.2529503
|
[128]
|
Gong X, Kolmanovsky I, Garone E, Zaseck K, Chen H. Constrained control of free piston engine generator based on implicit reference governor. Science China Information Sciences, 2018, 61(7): Article No.70203 doi: 10.1007/s11432-017-9337-1
|
[129]
|
Di Cairano S, Liang W, Kolmanovsky I V, Kuang M L, Phillips A M. Power smoothing energy management and its application to a series hybrid powertrain. IEEE Transactions on Control Systems Technology, 2013, 21(6): 2091−2103 doi: 10.1109/TCST.2012.2218656
|
[130]
|
Guo L L, Gao B Z, Gao Y, Chen H. Optimal energy management for HEVs in eco-driving applications Using Bi-Level MPC. IEEE Transactions on Intelligent Transportation Systems, 2017, 18(8): 2153−2162 doi: 10.1109/TITS.2016.2634019
|
[131]
|
Hsieh M F, Wang J M, Canova M. Two-level nonlinear model predictive control for lean NO_x trap regenerations. Journal of Dynamic Systems, Measurement, and Control, 2010, 132(4): Article No.041001
|
[132]
|
Bemporad A, Bernardini D, Long R X, Verdejo J. Model Predictive Control of Turbocharged Gasoline Engines for Mass Production, SAE Technical Paper 2018-01-0875, SAE, 2018.
|
[133]
|
Guo H Y, Liu F, Xu F, Chen H, Cao D P, Ji Y. Nonlinear model predictive lateral stability control of active chassis for intelligent vehicles and its FPGA implementation. IEEE Transactions on Systems, Man, and Cybernetics: Systems, 2019, 49(1): 2−13 doi: 10.1109/TSMC.2017.2749337
|
[134]
|
Wang F, Chen H, Guo L L, Hu Y F. Predictive safety control for road vehicles after a tire blowout. Science China Information Sciences, 2018, 61(7): Article No.70209 doi: 10.1007/s11432-017-9330-6
|
[135]
|
Xu X, Chen H, Lian C Q, Li D Z. Learning-based predictive control for discrete-time nonlinear systems with stochastic disturbances. IEEE Transactions on Neural Networks and Learning Systems, 2018, 29(12): 6202−6213 doi: 10.1109/TNNLS.2018.2820019
|
[136]
|
Xu F, Chen H, Gong X, Mei Q. Fast nonlinear model predictive control on FPGA using particle swarm optimization. IEEE Transactions on Industrial Electronics, 2016, 63(1): 310−321 doi: 10.1109/TIE.2015.2464171
|
[137]
|
Khalil H K. Nonlinear Systems (Third Edition). Prentice Hall, Upper Saddle River: Pearson, 2002.
|
[138]
|
Chen H, Gong X, Liu Q F, Hu Y F. Triple-step method to design non-linear controller for rail pressure of gasoline direct injection engines. IET Control Theory & Applications, 2014, 8(11): 948−959
|
[139]
|
Liu Q F, Gong X, Chen H, Xin B Y, Sun P Y. Nonlinear GDI rail pressure control: design, analysis and experimental implementation. In: Proceedings of the 34th Chinese Control Conference (CCC). Hangzhou, China: IEEE, 2015. 8132−8139
|
[140]
|
Gao B Z, Chen H, Liu Q F, Chu H Q. Position control of electric clutch actuator using a triple-step nonlinear method. IEEE Transactions on Industrial Electronics, 2014, 61(12): 6995−7003 doi: 10.1109/TIE.2014.2317131
|
[141]
|
Wang F, Chen H, Cao D P. Nonlinear coordinated motion control of road vehicles after a tire blowout. IEEE Transactions on Control Systems technology, 2016, 24(3): 956−970 doi: 10.1109/TCST.2015.2472982
|
[142]
|
Wang Y L, Zong C F, Li K, Chen H. Fault-tolerant control for in-wheel-motor-driven electric ground vehicles in discrete time. Mechanical Systems and Signal Processing, 2019, 121: 441−454 doi: 10.1016/j.ymssp.2018.11.030
|
[143]
|
Na X X, Cole D J. Modelling of a human driver’s interaction with vehicle automated steering using cooperative game theory. IEEE/CAA Journal of Automatica Sinica, 2019, 6(5): 1095−1107 doi: 10.1109/JAS.2019.1911675
|
[144]
|
Dextreit C, Kolmanovsky I V. Game theory controller for hybrid electric vehicles. IEEE Transactions on Control Systems Technology, 2014, 22(2): 652−663 doi: 10.1109/TCST.2013.2254597
|
[145]
|
Yin X, Chen J, Li Z J, Li S Y. Robust fault diagnosis of stochastic discrete event systems. IEEE Transactions on Automatic Control, 2019, 64(10): 4237−4244 doi: 10.1109/TAC.2019.2893873
|
[146]
|
Qin H, Long S X, Yu K. Simulation research on the shift schedule in the auto with automated manual transmission based on cruise gear shift program. Advanced Materials Research, 2013, 712-715: 2160−2163 doi: 10.4028/www.scientific.net/AMR.712-715.2160
|
[147]
|
Hofman T, Dai C H. Energy efficiency analysis and comparison of transmission technologies for an electric vehicle. In: Proceedings of the 2010 IEEE Vehicle Power and Propulsion Conference. Lille, France: IEEE, 2010. 1−6
|
[148]
|
Mashadi B, Kazemkhani A, Lakeh R B. An automatic gear-shifting strategy for manual transmissions. Proceedings of the Institution of Mechanical Engineers, Part I: Journal of Systems and Control Engineering, 2007, 221(5): 757−768 doi: 10.1243/09596518JSCE253
|
[149]
|
Ozatay E, Ozguner U, Filev D. Velocity profile optimization of on road vehicles: pontryagin's maximum principle based approach. Control Engineering Practice, 2017, 61: 244−254 doi: 10.1016/j.conengprac.2016.09.006
|
[150]
|
Kockelman K, Avery P, Bansal P, Boyles S D, Bujanovic P, Choudhary T, et al. Implications of Connected and Automated Vehicles on the Safety and Operations of Roadway Networks: A Final Report. CTR Technical Report FHWA/TX-16/0-6849-1, Center for Transportation Research, The University of Texas at Austin, Austin, USA, 2016.
|
[151]
|
Beusen B, Broekx S, Denys T, Beckx C, Degraeuwe B, Gijsbers M, et al. Using on-board logging devices to study the longer-term impact of an eco-driving course. Transportation Research Part D: Transport and Environment, 2009, 14(7): 514−520 doi: 10.1016/j.trd.2009.05.009
|
[152]
|
Kamal M A S, Mukai M, Murata J, Kawabe T. Ecological driver assistance system using model-based anticipation of vehicle-road-traffic information. IET Intelligent Transport Systems, 2010, 4(4): 244−251 doi: 10.1049/iet-its.2009.0127
|
[153]
|
ARPA-E Programs [Online], available: https://arpa-e.energy.gov/?q=program-listing, December 13, 2019.
|
[154]
|
Ahn K, Rakha H A, Park S. Ecodrive application: algorithmic development and preliminary testing. Transportation Research Record: Journal of the Transportation Research Board, 2013, 2341(1): 1−11 doi: 10.3141/2341-01
|
[155]
|
Barth M, Boriboonsomsin K. Energy and emissions impacts of a freeway-based dynamic eco-driving system. Transportation Research Part D: Transport and Environment, 2009, 14(6): 400−410 doi: 10.1016/j.trd.2009.01.004
|
[156]
|
Asadi B, Vahidi A. Predictive cruise control: utilizing upcoming traffic signal information for improving fuel economy and reducing trip time. IEEE Transactions on Control Systems Technology, 2011, 19(3): 707−714 doi: 10.1109/TCST.2010.2047860
|
[157]
|
Jin Q, Wu G Y, Boriboonsomsin K, Barth M J. Power-based optimal longitudinal control for a connected eco-driving system. IEEE Transactions on Intelligent Transportation Systems, 2016, 17(10): 2900−2910 doi: 10.1109/TITS.2016.2535439
|
[158]
|
Dib W, Chasse A, Moulin P, Sciarretta A, Corde G. Optimal energy management for an electric vehicle in eco-driving applications. Control Engineering Practice, 2014, 29: 299−307 doi: 10.1016/j.conengprac.2014.01.005
|
[159]
|
Sciarretta A, De Nunzio G, Ojeda L L. Optimal ecodriving control: energy-efficient driving of road vehicles as an optimal control problem. IEEE Control Systems Magazine, 2015, 35(5): 71−90 doi: 10.1109/MCS.2015.2449688
|
[160]
|
Guo L L, Gao B Z, Liu Q F, Tang J H, Chen H. On-line optimal control of the gearshift command for multispeed electric vehicles. IEEE/ASME Transactions on Mechatronics, 2017, 22(4): 1519−1530 doi: 10.1109/TMECH.2017.2716340
|
[161]
|
Saust F, Wille J M, Maurer M. Energy-optimized driving with an autonomous vehicle in urban environments. In: Proceedings of the 75th IEEE Vehicular Technology Conference (VTC Spring). Yokohama, Japan: IEEE, 2012. 1−5
|
[162]
|
Wahl H G, Holzäpfel M, Gauterin F. Approximate dynamic programming methods applied to far trajectory planning in optimal control. In: Proceedings of the 2014 IEEE Intelligent Vehicles Symposium Proceedings. Dearborn, USA: IEEE, 2014. 1085−1090
|
[163]
|
Kamal M A S, Mukai M, Murata J, Kawabe T. Model predictive control of vehicles on urban roads for improved fuel economy. IEEE Transactions on Control Systems Technology, 2013, 21(3): 831−841 doi: 10.1109/TCST.2012.2198478
|
[164]
|
Rugh J, Farrington R. Vehicle Ancillary Load Reduction Project Close-Out Report: An Overview of the Task and A Compilation of the Research Results, No. NREL/TP-540-42454, National Renewable Energy Lab (NREL), Golden, CO, USA, 2008.
|
[165]
|
Jeffers M A, Chaney L, Rugh J P. Climate Control Load Reduction Strategies for Electric Drive Vehicles in Warm Weather, No. NREL/CP-5400-63551, National Renewable Energy Lab (NREL), Golden, CO, USA, 2015.
|
[166]
|
Kim N, Rousseau A, Lee D, Lohse-busch H. Thermal Model Development and Validation for 2010 Toyota Prius, SAE Technical Paper 2014-01-1784, SAE, 2014.
|
[167]
|
Wang H, Kolmanovsky I, Amini M R, Sun J. Model predictive climate control of connected and automated vehicles for improved energy efficiency. In: Proceedings of the 2018 Annual American Control Conference (ACC). Milwaukee, USA: IEEE, 2018. 828−833
|
[168]
|
Yang H, Jin W L. A control theoretic formulation of green driving strategies based on inter-vehicle communications. Transportation Research Part C: Emerging Technologies, 2014, 41: 48−60 doi: 10.1016/j.trc.2014.01.016
|
[169]
|
Lee J, Park B, Malakorn K, So J. Sustainability assessments of cooperative vehicle intersection control at an urban corridor. Transportation Research Part C: Emerging Technologies, 2013, 32: 193−206 doi: 10.1016/j.trc.2012.09.004
|
[170]
|
Coelho M C, Farias T L, Rouphail N M. Impact of speed control traffic signals on pollutant emissions. Transportation Research Part D: Transport and Environment, 2005, 10(4): 323−340 doi: 10.1016/j.trd.2005.04.005
|
[171]
|
Tielert T, Killat M, Hartenstein H, Luz R, Hausberger S, Benz T. The impact of traffic-light-to-vehicle communication on fuel consumption and emission. In: Proceedings of the 2010 Internet of Things (IOT). Tokyo, Japan: IEEE, 2010. 1−8
|
[172]
|
Barth M, Boriboonsomsin K. Energy and emissions impacts of a freeway-based dynamic eco-driving system. Transportation Research Part D: Transport and Environment, 2009, 14(6): 400−410 doi: 10.1016/j.trd.2009.01.004
|
[173]
|
Barth M, Mandava S, Boriboonsomsin K, Xia H T. Dynamic ECO-driving for arterial corridors. In: Proceedings of the 2011 IEEE Forum on Integrated and Sustainable Transportation Systems. Vienna, Austria: IEEE, 2011. 182−188
|
[174]
|
Rajagopalan A, Washington G. Intelligent Control of Hybrid Electric Vehicles using GPS Information, SAE Technical Paper 2002-01-1936, SAE, 2002.
|
[175]
|
Zheng Y, Li S B, Li K Q, Borrelli F, Hedrick J K. Distributed model predictive control for heterogeneous vehicle platoons under unidirectional topologies. IEEE Transactions on Control System Technology, 2017, 25(3): 899−910 doi: 10.1109/TCST.2016.2594588
|
[176]
|
Li S B, Zheng Y, Li K Q, Wang L Y, Zhang H W. Platoon control of connected vehicles from a networked control perspective: literature review, component modeling, and controller synthesis. IEEE Transactions on Vehicular Technology, to be published
|
[177]
|
Makarem L, Gillet D. Model predictive coordination of autonomous vehicles crossing intersections. In: Proceedings of the 16th International IEEE Conference on Intelligent Transportation Systems (ITSC 2013). The Hague, Netherlands: IEEE, 2013. 1799−1804
|
[178]
|
Turri V, Carvalho A, Tseng H E, Johansson K H, Borrelli F. Linear model predictive control for lane keeping and obstacle avoidance on low curvature roads. In: Proceedings of the 16th International IEEE Conference on Intelligent Transportation Systems (ITSC 2013). The Hague, Netherlands: IEEE, 2013. 378−383
|
[179]
|
Wang F, Chen H, Guo L L, Hu Y F. Predictive safety control for road vehicles after a tire blowout. Science China Information Sciences, 2018, 61(7): Article No.70209 doi: 10.1007/s11432-017-9330-6
|
[180]
|
Guo H Y, Shen C, Zhang H, Chen H, Jia R. Simultaneous trajectory planning and tracking using an MPC method for cyber-physical systems: a case study of obstacle avoidance for an intelligent vehicle. IEEE Transactions on Industrial Informatics, 2018, 14(9): 4273−4283 doi: 10.1109/TII.2018.2815531
|
[181]
|
Guo H Y, Liu J, Cao D P, Chen H, Yu R, Lv C. Dual-envelop-oriented moving horizon path tracking control for fully automated vehicles. Mechatronics, 2018, 50: 422−433 doi: 10.1016/j.mechatronics.2017.02.001
|
[182]
|
Ren B T, Chen H, Zhao H Y, Yuan L. MPC-based yaw stability control in in-wheel-motored EV via active front steering and motor torque distribution. Mechatronics, 2016, 38: 103−114 doi: 10.1016/j.mechatronics.2015.10.002
|
[183]
|
Yuan L, Zhao H Y, Chen H, Ren B T. Nonlinear MPC-based slip control for electric vehicles with vehicle safety constraints. Mechatronics, 2016, 38: 1−15 doi: 10.1016/j.mechatronics.2016.05.006
|
[184]
|
Li Z J, Kolmanovsky I V, Atkins E M, Lu J B, Filev D P, Bai Y C. Road disturbance estimation and cloud-aided comfort-based route planning. IEEE Transactions on Cybernetics, 2017, 47(11): 3879−3891 doi: 10.1109/TCYB.2016.2587673
|
[185]
|
Mühlbacher-Karrer S, Mosa A H, Faller L M, Ali M, Hamid R, Zangl H, et al. A driver state detection system — combining a capacitive hand detection sensor with physiological sensors. IEEE Transactions on Instrumentation and Measurement, 2017, 66(4): 624−636 doi: 10.1109/TIM.2016.2640458
|
[186]
|
郭孔辉. 预瞄跟随理论与人-车闭环系统大角度操纵运动仿真. 汽车工程, 1992, 14(1): 1−11Guo Kong-Hui. Preview follower theory and simulations of large angle cornering motion of a man-vehicle system. Automotive Engineering, 1992, 14(1): 1−11
|
[187]
|
Qu T, Chen H, Cao D P, Guo H Y, Gao B Z. Switching-based stochastic model predictive control approach for modeling driver steering skill. IEEE Transactions on Intelligent Transportation Systems, 2015, 16(1): 365−375 doi: 10.1109/TITS.2014.2334623
|
[188]
|
Qin L J, Wang T. Design and research of automobile anti-collision warning system based on monocular vision sensor with license plate cooperative target. Multimedia Tools and Applications, 2017, 76(13): 14815−14828 doi: 10.1007/s11042-016-4042-6
|
[189]
|
Glaser S, Vanholme B, Mammar S, Gruyer D, Nouvelière L. Maneuver-based trajectory planning for highly autonomous vehicles on real road with traffic and driver interaction. IEEE Transactions on Intelligent Transportation Systems, 2010, 11(3): 589−606 doi: 10.1109/TITS.2010.2046037
|
[190]
|
Enache N M, Mammar S, Netto M, Lusetti B. Driver steering assistance for lane-departure avoidance based on hybrid automata and composite Lyapunov function. IEEE Transactions on Intelligent Transportation Systems, 2010, 11(1): 28−39 doi: 10.1109/TITS.2009.2026451
|
[191]
|
Lv C, Liu Y H, Hu X S, Guo H Y, Cao D P, Wang F Y. Simultaneous observation of hybrid states for cyber-physical systems: a case study of electric vehicle powertrain. IEEE Transactions on Cybernetics, 2018, 48(8): 2357−2367 doi: 10.1109/TCYB.2017.2738003
|
[192]
|
Petermeijer S M, Abbink D A, De Winter J C F. Should drivers be operating within an automation-free bandwidth? Evaluating haptic steering support systems with different levels of authority. Human Factors: The Journal of the Human Factors and Ergonomics Society, 2015, 57(1): 5−20 doi: 10.1177/0018720814563602
|
[193]
|
Anderson S J, Walker J M, Iagnemma K. Experimental performance analysis of a homotopy-based shared autonomy framework. IEEE Transactions on Human-Machine Systems, 2014, 44(2): 190−199 doi: 10.1109/TSMC.2014.2298383
|
[194]
|
Gong X, Guo Y H, Feng Y H, Sun J, Zhao D. Evaluation of the energy efficiency in a mixed traffic with automated vehicles and human controlled vehicles. In: Proceedings of 21st International Conference on Intelligent Transportation Systems (ITSC). Maui, USA: IEEE, 2018. 1981−1986
|
[195]
|
Rios-Torres J, Malikopoulos A A. Impact of partial penetrations of connected and automated vehicles on fuel consumption and traffic flow. IEEE Transactions on Intelligent Vehicles, 2018, 3(4): 453−462 doi: 10.1109/TIV.2018.2873899
|
[196]
|
Zhao D, Lam H, Peng H, Bao S, LeBlanc D J, Nobukawa K, et al. Accelerated evaluation of automated vehicles safety in lane-change scenarios based on importance sampling techniques. IEEE Transactions on Intelligent Transportation Systems, 2017, 18(3): 595−607 doi: 10.1109/TITS.2016.2582208
|
[197]
|
Zhao D, Huang X N, Peng H, Lam H, LeBlanc D J. Accelerated evaluation of automated vehicles in car-following maneuvers. IEEE Transactions on Intelligent Transportation Systems, 2018, 19(3): 733−744 doi: 10.1109/TITS.2017.2701846
|
[198]
|
Feng Y H, Yu C H, Xu S B, Liu H X, Peng H. An augmented reality environment for connected and automated vehicle testing and evaluation. In: Proceedings of the 2018 IEEE Intelligent Vehicles Symposium (IV). Changshu, China: IEEE, 2018. 1549−1554
|
[199]
|
王飞跃. 平行控制: 数据驱动的计算控制方法. 自动化学报, 2013, 39(4): 293−302Wang Fei-Yue. Parallel control: a method for data-driven and computational control. Acta Automatica Sinica, 2013, 39(4): 293−302
|
[200]
|
Li L, Wang X, Wang K F, Lin Y L, Xin J M, Chen L, et al. Parallel testing of vehicle intelligence via virtual-real interaction. Science Robotics, 2019, 4(28): Article No.eaaw4106 doi: 10.1126/scirobotics.aaw4106
|
[201]
|
陈伟宏, 安吉尧, 李仁发, 李万里. 深度学习认知计算综述. 自动化学报, 2017, 43(11): 1886−1897Chen Wei-Hong, An Ji-Yao, Li Ren-Fa, Li Wan-Li. Review on deep-learning-based cognitive computing. Acta Automatica Sinica, 2017, 43(11): 1886−1897
|
[202]
|
Agaram V, Barickman F, Fahrenkrog F, Griffor E, Muharemovic I, Peng H, et al. Validation and verification of automated road vehicles. Road Vehicle Automation 3. Cham: Springer, 2016. 201−210
|
[203]
|
Kalra N, Paddock S M. Driving to safety: how many miles of driving would it take to demonstrate autonomous vehicle reliability?. Transportation Research Part A: Policy and Practice, 2016, 94: 182−193 doi: 10.1016/j.tra.2016.09.010
|
[204]
|
Wachenfeld W, Winner H. The new role of road testing for the safety validation of automated vehicles. Automated Driving: Safer and More Efficient Future Driving. Cham: Springer, 2017. 419−435
|
[205]
|
Pütz A, Zlocki A, Küfen J, Bock J, Eckstein L. Database approach for the sign-off process of highly automated vehicles. In: Proceedings of the 25th International Technical Conference on the Enhanced Safety of Vehicles (ESV). Detroit, USA, 2017.
|
[206]
|
He H W, Lu Y M, Lou Y. Virtual reality based intelligent vehicle modeling in driving SIMULATION system. In: Proceedings of 7th International Conference on Computer-Aided Industrial Design and Conceptual Design. Hangzhou, China: IEEE, 2006. 1−5
|
[207]
|
Mueggler E, Rebecq H, Gallego G, Delbruck T, Scaramuzza D. The event-camera dataset and simulator: event-based data for pose estimation, visual odometry, and SLAM. The International Journal of Robotics Research, 2017, 36(2): 142−149 doi: 10.1177/0278364917691115
|
[208]
|
Swanson K S, Brown A A, Brennan S N, LaJambe C M. Extending driving simulator capabilities toward hardware-in-the-loop testbeds and remote vehicle interfaces. In: Proceedings of the 2013 IEEE Intelligent Vehicles Symposium Workshops (IV Workshops). Gold Coast, Australia: IEEE, 2013. 115−120
|