2.793

2018影响因子

(CJCR)

  • 中文核心
  • EI
  • 中国科技核心
  • Scopus
  • CSCD
  • 英国科学文摘

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

具有输入约束和输出噪声的不确定系统级联线性自抗扰控制

高阳 吴文海 王子健

高阳, 吴文海, 王子健. 具有输入约束和输出噪声的不确定系统级联线性自抗扰控制. 自动化学报, 2020, 46(x): 1−10 doi: 10.16383/j.aas.c190305
引用本文: 高阳, 吴文海, 王子健. 具有输入约束和输出噪声的不确定系统级联线性自抗扰控制. 自动化学报, 2020, 46(x): 1−10 doi: 10.16383/j.aas.c190305
Gao Yang, Wu Wen-Hai, Wang Zi-Jiang. Cascaded linear active disturbance rejection control for uncertain systems with input constraint and output noise. Acta Automatica Sinica, 2020, 46(x): 1−10 doi: 10.16383/j.aas.c190305
Citation: Gao Yang, Wu Wen-Hai, Wang Zi-Jiang. Cascaded linear active disturbance rejection control for uncertain systems with input constraint and output noise. Acta Automatica Sinica, 2020, 46(x): 1−10 doi: 10.16383/j.aas.c190305

具有输入约束和输出噪声的不确定系统级联线性自抗扰控制

doi: 10.16383/j.aas.c190305
基金项目: 国家自然科学基金(51505491, 60674090)资助
详细信息
    作者简介:

    高阳:海军航空大学青岛校区博士研究生. 2015年获空军勤务学院硕士学位. 主要研究方向为固定翼飞机飞行控制, 自抗扰控制理论与应用. 本文通信作者.E-mail: gy_hkdx@126.com

    吴文海:海军航空大学青岛校区教授. 2004年获南京航空航天大学博士学位. 主要研究方向为综合飞行控制系统, 舰载机着舰引导控制, 现代战机攻击导引控制.E-mail: sophia_wxc@126.com

    王子健:海军航空大学青岛校区讲师. 2012年获海军航空大学硕士学位. 主要研究方向为飞行控制与测试.E-mail: hkdx_2017@126.com

Cascaded Linear Active Disturbance Rejection Control for Uncertain Systems with Input Constraint and Output Noise

Funds: National Natural Science Foundation of China (51505491, 60674090)
  • 摘要: 针对一类具有输入约束和输出噪声的SISO不确定非线性系统, 提出了一种基于误差补偿和工程滤波的抗饱和级联线性自抗扰控制(LADRC)方法. 首先针对高频量测噪声, 分析了线性扩张状态观测器(LESO)对噪声的放大机理及其与观测器增益的定量关系, 进而设计了一种基于工程滤波器的级联LADRC方法, 在滤除噪声的同时有效补偿了因滤波所造成的输出幅值和相位损失, 确保了闭环系统的跟踪精度. 然后继续考虑输入饱和的问题, 利用LADRC的实时估计/补偿能力, 通过将饱和差值信号引入LESO, 设计了一种基于误差补偿的抗饱和LADRC方法, 有效减小了系统设计控制量, 避免了系统长时间陷入饱和. 通过实时仿真比较, 验证了所提出方法的有效性.
  • 图  1  忽略量测噪声时的闭环系统响应

    Fig.  1  Closed-loop system responses ignoring measurement noise

    图  2  考虑量测噪声时的闭环系统响应

    Fig.  2  Closed-loop system responses considering measurement noise

    图  3  不同r值对系统控制性能的影响

    Fig.  3  Effect on system control performance with different values of r

    图  4  加入滤波器对系统控制性能的影响

    Fig.  4  Effect on system control performance adding filter

    图  5  基于LADRC的级联控制系统结构

    Fig.  5  Structure of cascade control system based on LADRC

    图  6  基于CLADRC的闭环系统响应

    Fig.  6  Closed-loop system responses based on CLADRC

    图  7  输入饱和约束下的CLADRC闭环系统响应

    Fig.  7  Closed-loop system responses with input saturation based on CLADRC

    图  8  基于抗饱和CLADRC的闭环系统响应

    Fig.  8  Closed-loop system responses based on anti-saturation CLADRC

  • [1] Gao Z Q. On the centrality of disturbance rejection in automatic control. ISA Transactions, 2014, 53(4): 850−857 doi: 10.1016/j.isatra.2013.09.012
    [2] 郭宝珠. 非线性系统的自抗扰控制引论. 数学建模及其应用, 2017, 6(1): 13−22 doi: 10.3969/j.issn.2095-3070.2017.01.003

    Guo Bao-Zhu. An introduction to active disturbance rejection control for nonlinear systems. Mathematical Modeling and Its Applications, 2017, 6(1): 13−22 doi: 10.3969/j.issn.2095-3070.2017.01.003
    [3] Han J Q. From PID to active disturbance rejection control. IEEE Transactions on Industrial Electronics, 2009, 56(3): 900−906 doi: 10.1109/TIE.2008.2011621
    [4] 韩京清. 自抗扰控制器及其应用. 控制与决策, 1998, 13(1): 19−23 doi: 10.3321/j.issn:1001-0920.1998.01.005

    Han Jing-Qing. Active disturbance rejection controller and applications. Control and Decision, 1998, 13(1): 19−23 doi: 10.3321/j.issn:1001-0920.1998.01.005
    [5] Guo B Z, Zhao Z L. On convergence of nonlinear active disturbance rejection for SISO systems. In: Proceedings of the 24th Chinese Control and Decision Conference. Taiyuan, China: IEEE, 2012. 3507−3512
    [6] Qi X H, Li J, Xia Y Q, Gao Z Q. On the robust stability of active disturbance rejection control for SISO systems. Circuits, Systems, and Signal Processing, 2017, 36(1): 65−81 doi: 10.1007/s00034-016-0302-y
    [7] Xue W C, Huang Y. Performance analysis of 2-DOF tracking control for a class of nonlinear uncertain systems with discontinuous disturbances. International Journal of Robust Nonlinear Control, 2018, 28(4): 1456−1473 doi: 10.1002/rnc.3972
    [8] Li Z Y, Li X M, Zhou Z Y. Active disturbance rejection controller for loitering unit with parameter uncertainty. In: Proceedings of the 16th International Conference on Control, Automation and Systems. Gyeongju, Korea: IEEE, 2016. 140−144
    [9] Long Y, Du Z J, Cong L, Wang W D, Zhang Z M, Dong W. Active disturbance rejection control based human gait tracking for lower extremity rehabilitation exoskeleton. ISA Transactions, 2017, 67: 389−397 doi: 10.1016/j.isatra.2017.01.006
    [10] 陈增强, 孙明玮, 杨瑞光. 线性自抗扰控制器的稳定性研究. 自动化学报, 2013, 39(5): 574−580

    Chen Zeng-Qiang, Sun Ming-Wei, Yang Rui-Guang. On the stability of linear active disturbance rejection control. Acta Automatica Sinica, 2013, 39(5): 574−580
    [11] Xue W C, Huang Y. Performance analysis of active disturbance rejection tracking control for a class of uncertain LTI systems. ISA Transactions, 2015, 58: 133−154 doi: 10.1016/j.isatra.2015.05.001
    [12] Xue W C, Huang Y. On performance analysis of ADRC for a class of MIMO lower-triangular nonlinear uncertain systems. ISA Transactions, 2014, 53(4): 955−962 doi: 10.1016/j.isatra.2014.02.002
    [13] 高阳, 吴文海, 高丽. 高阶不确定非线性系统的线性自抗扰控制. 控制与决策, DOI: 10.13195/j.kzyjc.2018.0550

    Gao Yang, Wu Wen-Hai, Gao Li. Linear active disturbance rejection control for high-order nonlinear systems with uncertainty. Control and Decision, to be published
    [14] Li Y M, Tong S C, Li T S. Direct adaptive fuzzy backstepping control of uncertain nonlinear systems in the presence of input saturation. Neural Computing & Applications, 2013, 23(5): 1207−1216
    [15] Molavi A, Jalali A, Naraghi M G. Adaptive fuzzy control of a class of nonaffine nonlinear system with input saturation based on passivity theorem. ISA Transactions, 2017, 69: 202−213 doi: 10.1016/j.isatra.2017.03.020
    [16] Xu B, Huang X Y, Wang D W, Sun F C. Dynamic surface control of constrained hypersonic flight models with parameter estimation and actuator compensation. Asian Journal of Control, 2014, 16(1): 162−174 doi: 10.1002/asjc.679
    [17] 彭秀艳, 贾书丽, 张彪. 一类具有执行器饱和的非线性系统抗饱和方法研究. 自动化学报, 2016, 42(5): 798−804

    Peng Xiu-Yan, Jia Shu-Li, Zhang Biao. An anti-saturation method for a class of nonlinear systems with actuator saturation. Acta Automatica Sinica, 2016, 42(5): 798−804
    [18] 林安辉, 蒋德松, 曾建平. 具有输入饱和的欠驱动船舶编队控制. 自动化学报, 2018, 44(8): 1496−1504

    Lin An-Hui, Jiang De-Song, Zeng Jian-Ping. Underactuated Ship Formation Control With Input Saturation. Acta Automatica Sinica, 2018, 44(8): 1496−1504
    [19] Prasov A A, Khalil H K. A nonlinear high-gain observer for systems with measurement noise in a feedback control framework. IEEE Transactions on Automatic Control, 2013, 58(3): 569−580 doi: 10.1109/TAC.2012.2218063
    [20] Lee J, Choi J, Khalil H K. New implementation of high-gain observers in the presence of measurement noise using stochastic approximation. In: Proceedings of 2016 European Control Conference. Aalborg, Denmark: IEEE, 2016. 1740−1745
    [21] Teel A R. Further variants of the Astolfi/Marconi high-gain observer. In: Proceedings of 2016 American Control Conference. Boston, USA: IEEE, 2016. 993−998
    [22] Battilotti S. Robust observer design under measurement noise with gain adaptation and saturated estimates. Automatica, 2017, 81: 75−86 doi: 10.1016/j.automatica.2017.02.008
    [23] Nair R R, Behera L. Robust adaptive gain higher order sliding mode observer based control-constrained nonlinear model predictive control for spacecraft formation flying. IEEE/CAA Journal of Automatica Sinica, 2018, 5(1): 367−381 doi: 10.1109/JAS.2016.7510253
  • 加载中
计量
  • 文章访问数:  86
  • HTML全文浏览量:  35
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-04-17
  • 录用日期:  2019-07-30

目录

    /

    返回文章
    返回