2.793

2018影响因子

(CJCR)

  • 中文核心
  • EI
  • 中国科技核心
  • Scopus
  • CSCD
  • 英国科学文摘

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

执行机构带宽对动态逆方法的影响及解决方案

程艳青 朱纪洪

程艳青, 朱纪洪. 执行机构带宽对动态逆方法的影响及解决方案. 自动化学报, 2020, 46(x): 1−8 doi: 10.16383/j.aas.c190236
引用本文: 程艳青, 朱纪洪. 执行机构带宽对动态逆方法的影响及解决方案. 自动化学报, 2020, 46(x): 1−8 doi: 10.16383/j.aas.c190236
Cheng Yan-Qing, Zhu Ji-Hong. Influence of actuator bandwidth on dynamic inverse method and solution. Acta Automatica Sinica, 2020, 46(x): 1−8 doi: 10.16383/j.aas.c190236
Citation: Cheng Yan-Qing, Zhu Ji-Hong. Influence of actuator bandwidth on dynamic inverse method and solution. Acta Automatica Sinica, 2020, 46(x): 1−8 doi: 10.16383/j.aas.c190236

执行机构带宽对动态逆方法的影响及解决方案

doi: 10.16383/j.aas.c190236
基金项目: 国家自然科学基金(61573374, 61503408)资助
详细信息
    作者简介:

    程艳青:清华大学计算机科学与技术系博士研究生, 中国空气动力研究与发展中心副研究员. 主要研究方向为非线性控制、飞行控制和气动参数辨识. E-mail: chengyq15@mails.tsinghua.edu.cn

    朱纪洪:清华大学计算机科学与技术系教授. 主要研究方向为飞行控制与导航、鲁棒控制和非线性控制. 本文通讯作者. E-mail: jhzhu@tsinghua.edu.cn

Influence of Actuator Bandwidth on Dynamic Inverse Method and Solution

Funds: Supported by National Natural Science Foundation of P. R. China (61573374, 61503408)
  • 摘要: 本文从理论上分析了执行机构带宽对动态逆闭环控制系统动态特性影响, 发现较低的执行机构带宽会在伪线性系统中引入一个非线性干扰项, 为此提出了两种方法来消除这个非线性干扰项, 一个是采用参考模型的思想设计补偿器提高执行机构子系统的等效带宽, 另一个思路则是直接在非线性反馈项中引入补偿直接对消非线性干扰项. 仿真结果表明, 两类方法都能较好的消除非线性干扰项, 直接补偿方法能精确消除干扰项, 但需要准确动力学模型, 提高等效带宽的方法虽然是近似的, 但能方便的引入自适应算法, 可以抑制执行机构模型参数不确定的影响.
  • 图  1  典型动态逆的原理图

    Fig.  1  Schematic diagram of typical dynamic inversion

    图  2  增量动态逆的原理图

    Fig.  2  Schematic diagram of incremental dynamic inversion

    图  3  执行机构动态补偿框图

    Fig.  3  Dynamic compensation block diagram of actuator

    图  4  非线性干扰项$ f\left(x\right) $功率谱密度

    Fig.  4  Power spectral density of Nonlinear interference term $ f\left(x\right) $

    图  5  不同干扰影响的仿真结果

    Fig.  5  Simulation results of different interference effects

    图  6  常规和增量动态逆仿真结果

    Fig.  6  Conventional and incremental dynamic inverse simulation results

    图  7  等效带宽方法仿真结果($ {\omega }_{a} $已知)

    Fig.  7  Simulation results of equivalent bandwidth method($ {\omega }_{a} $ Known)

    图  8  等效带宽方法仿真结果($ {\omega }_{a} $未知)

    Fig.  8  Simulation results of equivalent bandwidth method($ {\omega }_{a} $ Unknown)

    图  9  直接补偿方法仿真结果(不考虑噪声)

    Fig.  9  Simulation results of direct compensation method(without consideration of noise)

    图  10  直接补偿方法仿真结果(考虑噪声)

    Fig.  10  Simulation results of direct compensation method(with consieration of noise)

  • [1] Meyer G, Su R, Hunt L R. Application of nonlinear transformations to automatic flight control. Automatica, 1984, 1(20): 103−107
    [2] Lane S H, Stengel R F. Flight control design using nonlinear inverse dynamics. Automatica, 1988, 24(4): 471−483 doi: 10.1016/0005-1098(88)90092-1
    [3] Daniel J B, Dale F E. Nonlinear control law with application to high angle-of-attack flight. Journal of Guidance, Control and Dynamics, 1992, 15(3): 761−767 doi: 10.2514/3.20902
    [4] Snell S A, Nns D F, Arrard W L. Nonlinear inversion flight control for a supermaneuverable aircraft. Journal of Guidance, Control, and Dynamics, 1992, 15(4): 976−984 doi: 10.2514/3.20932
    [5] Da Costa R R, Chu Q P, Mulder J A. Reentry flight controller design using nonlinear dynamic iversion. Journal of Spacecraft and Rockets, 2003, 40(1): 64−71 doi: 10.2514/2.3916
    [6] Roenneke A, Well K. Nonlinear flight control for a high-lift reentry vehicle. In: Proceedings of Guidance, Navigation, and Control Conference. Munich, Germany, 1995: 1798−1805
    [7] Luca A D, Lucibello P, Ulivi A G. Inversion techniques for trajectory control of flexible robotarms. Journal of Robotic Systems, 1989, 6(4): 325−344 doi: 10.1002/rob.4620060403
    [8] Furuta K, Okutani T, Sone H. Computer cont-rol of a double inverted pendulum. Computer & Electrical Engineering, 1978, 5(1): 67−84
    [9] Hatakeyama N, Shimada A. Movement control using zero dynamics of two-wheeled inverted pendulum robot. IEEE International Workshop on Advanced Motion Control, 2013, 44(3): 38−43
    [10] Enns D, Bugajski D, Hendrick R. Dynamic inversion: an evolving methodology for flight control design. International Journal of control, 1994, 59(1): 71−91 doi: 10.1080/00207179408923070
    [11] Joshua H, John V. Direct L1 adaptive nonlinear dynamic inversion control for command augmentation systems. In: Guidance, Navigation, and Control Conference and Exhibit. Kissimmee, Florida: AIAA, 2018.
    [12] Geiser M, Xargay E, Hovakimyan N, Bierling T, Holzapfel F. L1 adaptive augmented dynamic inversion controller for a high agility UAV. In: Guidance, Naviga-tion, and Control Conference, Portland, Oregon: AIAA, 2011.
    [13] Yang I, Kim D, Lee D. A flight control strategy using robust dynamic inversion based on sliding mode control. In: Guidance, Navigation, and Control Conference and Exhibit. Mi-nneapolis, Minnesota: AIAA, 2012.
    [14] Smith P. A simplified approach to nonlinear dynamic inversion based flight control. In: Proceedings of the 23rd Atmospheric Flight Mechanics Conference. Boston, USA: AIAA, 1998. 762−770
    [15] 陈海兵, 张曙光, 方振平. 加速度反馈的隐式动态逆鲁棒非线性控制律设计. 航空学报, 2009, 30(4): 597−603 doi: 10.3321/j.issn:1000-6893.2009.04.003

    Chen Hai-Bing, Zhang Shu-Guang, Fang Zhen-Ping. Implitcit NDI robust nonlinear controldesign with acceleration feedback. ACTA Aeronautica et Astronautica Sinica, 2009, 30(4): 597−603 doi: 10.3321/j.issn:1000-6893.2009.04.003
    [16] Grondman F, Looye G H N, Kuchar R O, Chu Q P. Design and flight testing of incremental nonlinear dynamic inversion based control laws for a passenger aircraft. In: Guidance, Navigation, and Control Conference and Exhibit. Kissi-mmee, Florida: AIAA, 2018.
    [17] Sieberking S, Chu Q P, Mulder J A. Robust flight control using incremental nonlinear dynamic inversion and angular acceleration prediction. Journal of Guidance Control and Dynamics, 2010, 33(6): 1732−1742 doi: 10.2514/1.49978
    [18] 周池军, 朱纪洪. 考虑作动器动态补偿的飞机增量滤波非线性控制. 控制理论与应用, 2017, 34(5): 594−600 doi: 10.7641/CTA.2017.60402

    Zhou Chi-Jun, Zhu Ji-Hong. Incremental filte-red nonlinear control for aircraft with actuator dynamics compensation. Control Theory and Applications, 2017, 34(5): 594−600 doi: 10.7641/CTA.2017.60402
    [19] Slotine J J, Li W, Hall P. Applied Nonlinear Control. Englewood Cliffs, NewJersey: Prentice-Hall, Inc, 1991. 120−130
    [20] 韩京清. 从PID技术到自抗扰控制技术. 控制工程, 2002, 9(3): 13−18 doi: 10.3969/j.issn.1671-7848.2002.03.003

    Han Jing-Qing. From PID technique to active disturbances rejection control technique. Control Engineering of China, 2002, 9(3): 13−18 doi: 10.3969/j.issn.1671-7848.2002.03.003
  • 加载中
计量
  • 文章访问数:  33
  • HTML全文浏览量:  6
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-03-25
  • 录用日期:  2020-01-17

目录

    /

    返回文章
    返回