2.845

2023影响因子

(CJCR)

  • 中文核心
  • EI
  • 中国科技核心
  • Scopus
  • CSCD
  • 英国科学文摘

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于改进YOLOv3算法的公路车道线检测方法

崔文靓 王玉静 康守强 谢金宝 王庆岩 MIKULOVICHVladimir Ivanovich

崔文靓, 王玉静, 康守强, 谢金宝, 王庆岩, MIKULOVICH Vladimir Ivanovich. 基于改进YOLOv3算法的公路车道线检测方法. 自动化学报, 2022, 48(6): 1560−1568 doi: 10.16383/j.aas.c190178
引用本文: 崔文靓, 王玉静, 康守强, 谢金宝, 王庆岩, MIKULOVICH Vladimir Ivanovich. 基于改进YOLOv3算法的公路车道线检测方法. 自动化学报, 2022, 48(6): 1560−1568 doi: 10.16383/j.aas.c190178
Cui Wen-Liang, Wang Yu-Jing, Kang Shou-Qiang, Xie Jin-Bao, Wang Qing-Yan, Mikulovich Vladimir Ivanovich. Road lane line detection method based on improved YOLOv3 algorithm. Acta Automatica Sinica, 2022, 48(6): 1560−1568 doi: 10.16383/j.aas.c190178
Citation: Cui Wen-Liang, Wang Yu-Jing, Kang Shou-Qiang, Xie Jin-Bao, Wang Qing-Yan, Mikulovich Vladimir Ivanovich. Road lane line detection method based on improved YOLOv3 algorithm. Acta Automatica Sinica, 2022, 48(6): 1560−1568 doi: 10.16383/j.aas.c190178

基于改进YOLOv3算法的公路车道线检测方法

doi: 10.16383/j.aas.c190178
基金项目: 黑龙江省自然科学基金(LH2019E058), 黑龙江省本科高校青年创新人才培养计划(UNPYSCT-2017091), 黑龙江省普通高校基本科研业务专项基金资助项目(LGYC2018JC022)资助
详细信息
    作者简介:

    崔文靓:哈尔滨理工大学电气与电子工程学院硕士研究生. 主要研究方向为目标检测与计算机视觉. E-mail: cuiwliang@163.com

    王玉静:哈尔滨理工大学电气与电子工程学院副教授. 2015年获哈尔滨工业大学博士学位. 主要研究方向为非平稳信号处理, 故障诊断, 状态评估与预测技术, 模式识别. E-mail: mirrorwyj@163.com

    康守强:哈尔滨理工大学电气与电子工程学院教授. 2011年获得白俄罗斯国立大学博士学位. 主要研究方向为非平稳信号处理, 故障诊断, 状态评估与预测技术, 模式识别. E-mail: kangshouqiang@163.com

    谢金宝:哈尔滨理工大学电气与电子工程学院副教授. 2012年获得白俄罗斯国立大学博士学位. 主要研究方向为计算机视觉和自然语言处理. E-mail: xjbpost@163.com

    王庆岩:哈尔滨理工大学电气与电子工程学院讲师. 2018年获得哈尔滨工业大学工学博士学位. 主要研究方向为图像处理与模式识别, 遥感图像处理. 本文通信作者.E-mail: wangqy@hrbust.edu.cn

    MIKULOVICHVladimir Ivanovich:白俄罗斯国立大学教授. 1975年获白俄罗斯国立大学博士学位. 主要研究方向为非平稳信号处理, 故障诊断, 状态评估与预测技术, 模式识别. E-mail: falcon@tut.by

Road Lane Line Detection Method Based on Improved YOLOv3 Algorithm

Funds: Supported by Natural Science Foundation of Heilongjiang Province (LH2019E058), University Nursing Program for Young Scholars with Creative Talents in Heilongjiang Province (UNPYSCT-2017091), and Fundamental Research Foundation for Universities of Heilongjiang Province (LGYC2018JC022)
More Information
    Author Bio:

    CUI Wen-Liang Master student at the College of Electrical and Electronic Engineering, Harbin University of Science and Technology. His research interest covers target detection and computer vision

    WANG Yu-Jing Associate professor at the College of Electrical and Electronic Engineering, Harbin University of Science and Technology. She received her Ph.D. degree from Harbin Institute of Technology in 2015. Her research interest covers non-stationary signal processing, fault diagnosis, state assessment and prediction technology, and pattern recognition

    KANG Shou-Qiang Professor at the College of Electrical and Electronic Engineering, Harbin University of Science and Technology. He received his Ph.D. degree from Belarusian State University, Minsk, Belarus in 2011. His research interest covers non-stationary signal processing, fault diagnosis, state assessment and prediction technology, and pattern recognition

    XIE Jin-Bao Associate professor at the College of Electrical and Electronic Engineering, Harbin University of Science and Technology. He received his Ph.D. degree from Belarusian State University, Minsk, Belarus in 2012. His research interest covers computer vision and natural language processing

    WANG Qing-Yan Lecturer at the College of Electrical and Electronic Engineering, Harbin University of Science and Technology. He received his Ph.D. degree from Harbin Institute of Technology in 2018. His research interest covers image processing and pattern recognition, and remote sensing image processing. Corresponding author of this paper

    MIKULOVICH Vladimir Ivanovich Professor of Belarusian State University, Minsk, Belarus. He received his Ph.D. degree from Belarusian State University, Minsk, Belarus in 1975. His research interest covers non-stationary signal processing, fault diagnosis, state assessment and prediction technology, and pattern recognition

  • 摘要: 针对YOLOv3算法在检测公路车道线时存在准确率低和漏检概率高的问题, 提出一种改进YOLOv3网络结构的公路车道线检测方法.该方法首先将图像划分为多个网格, 利用K-means++聚类算法, 根据公路车道线宽高固有特点, 确定目标先验框数量和对应宽高值; 其次根据聚类结果优化网络Anchor参数, 使训练网络在车道线检测方面具有一定的针对性; 最后将经过Darknet-53网络提取的特征进行拼接, 改进YOLOv3算法卷积层结构, 使用GPU进行多尺度训练得到最优的权重模型, 从而对图像中的车道线目标进行检测,并选取置信度最高的边界框进行标记.使用Caltech Lanes数据库中的图像信息进行对比试验, 实验结果表明, 改进的YOLOv3算法在公路车道线检测中平均准确率(Mean average precision, mAP)为95%, 检测速度可达50帧/s, 较YOLOv3原始算法mAP值提升了11%, 且明显高于其他车道线检测方法.
  • 图  1  边界框参数归一化处理

    Fig.  1  The normalization of boundary box parameters

    图  2  Darknet-53网络结构

    Fig.  2  The network structure of Darknet-53

    图  3  改进YOLOv3算法的网络结构

    Fig.  3  The network structure of the improved YOLOv3 algorithm

    图  4  公路车道线检测框图

    Fig.  4  The flow chart of road lane line detection

    图  5  不同$k$值对应的目标函数

    Fig.  5  The objective function corresponding to different $k$ values

    图  6  平均损失变化曲线

    Fig.  6  The change curve of average loss

    图  7  平均交并比变化曲线

    Fig.  7  The change curve of average IOU

    图  8  车道线测试效果

    Fig.  8  The result of lane line test

    图  9  测试集图像在不同网络结构中的检测准确率

    Fig.  9  The detection accuracy of test images in different network structures

    表  1  不同$k$值对应的先验框宽高

    Table  1  The width and height of priori boxes corresponding to different$k$values

    $k$ = 7 $k$ = 8 $k$ = 9 $k$ = 10 $k$ = 11
    (6, 9) (6, 9) (6, 9) (5, 12) (5, 7)
    (10, 15) (8, 12) (9, 14) (5, 17) (7, 11)
    (13, 21) (11, 17) (12, 18) (7, 11) (10, 14)
    (19, 30) (15, 24) (15, 24) (10, 14) (10, 18)
    (27, 44) (20, 32) (20, 32) (11, 18) (13, 20)
    (36, 60) (26, 43) (26, 43) (15, 24) (16, 25)
    (141, 10) (36, 69) (32, 51) (20, 32) (21, 32)
    (141, 10) (40, 69) (27, 44) (26, 43)
    (141, 10) (36, 60) (32, 51)
    (141, 10) (40, 70)
    (141, 10)
    下载: 导出CSV

    表  2  不同网络结构测试性能对比

    Table  2  The test performance comparison of different network structures

    网络 平均测试时间 (s) 平均漏检率 (%) mAP (%)
    Caltech[12] 72.3
    VPGNet[25] 88.4
    YOLOv3-107 0.021 8.9 84.4
    YOLOv3-101 0.019 0 89.8
    YOLOv3-K-107 0.021 2.2 91.4
    YOLOv3-K-101 0.019 0 95.3
    下载: 导出CSV
  • [1] 张慧, 王坤峰, 王飞跃. 深度学习在目标视觉检测中的应用进展与展望. 自动化学报, 2017, 43(08): 1289-1305

    Zhang Hui, Wang Kun-Feng, Wang Fei-Yue. Advances and perspectives on applications of deep learning in visual object detection. Acta Automatica Sinica, 2017, 43(08): 1289-1305
    [2] 尹宏鹏, 陈波, 柴毅, 刘兆栋. 基于视觉的目标检测与跟踪综述. 自动化学报, 2016, 42(10): 1466-1489

    Yin Hong-Peng, Chen Bo, Chai Yi, Liu Zhao-Dong. Vision-based object detection and tracking: a review. Acta Automatica Sinica, 2016, 42(10): 1466-1489
    [3] 《中国公路学报》编辑部. 中国汽车工程学术研究综述. 中国公路学报, 2017, 30(06): 1-197 doi: 10.3969/j.issn.1001-7372.2017.06.001

    Editorial department of china journal of highway and transport. Review on China's automotive engineering research progress. China Journal of Highway and Transport, 2017, 30(06): 1-197 doi: 10.3969/j.issn.1001-7372.2017.06.001
    [4] 田娟秀, 刘国才, 谷珊珊, 鞠忠建, 刘劲光, 顾冬冬. 医学图像分析深度学习方法研究与挑战. 自动化学报, 2018, 44(03): 401-424

    Tian Juan-Xiu, Liu Guo-Cai, Gu Shan-Shan, Ju Zhong-Jian, Liu Jin-Guang, Gu Dong-Dong. Deep learning in medical image analysis and its challenges. Acta Automatica Sinica, 2018, 44(03): 401-424
    [5] 李文英, 曹斌, 曹春水, 黄永祯. 一种基于深度学习的青铜器铭文识别方法. 自动化学报, 2018, 44(11): 2023-2030

    Li Wen-Ying, Cao Bing, Cao Chun-Shui, Huang Yong-Zhen. A deep learning based method for bronze inscription recognition. Acta Automatica Sinica, 2018, 44(11): 2023-2030
    [6] 唐智威. 基于视觉的无人驾驶汽车研究综述. 制造业自动化, 2016, 38(8): 134-136 doi: 10.3969/j.issn.1009-0134.2016.08.032

    Tang Zhi-Wei. A review of driverless cars based on vision. Manufacturing Automation, 2016, 38(8): 134-136 doi: 10.3969/j.issn.1009-0134.2016.08.032
    [7] He B, Ai R, Yan Y. Accurate and robust lane detection based on dual-view convolution neutral network. In: Proceedings of the 2016 Intelligent Vehicles Symposium. Gothen, Sweden: IEEE, 2016. 1041−1046
    [8] Li J, Mei X, Prokhorov D, Tao D. Deep neural network for structural prediction and lane detection in traffic scene. Neural Networks and Learning Systems, 2017, 28(3): 690-703 doi: 10.1109/TNNLS.2016.2522428
    [9] 陈无畏, 胡振国, 汪洪波, 魏振亚, 谢有浩. 基于可拓决策和人工势场法的车道偏离辅助系统研究. 机械工程学报, 2018, 54(16): 134-143 doi: 10.3901/JME.2018.16.134

    Chen Wu-Wei, Hu Zhen-Guo, Wang Hong-Bo, Wei Zhen-Ya, Xie You-Hao. Study on extension decision and artificial potential field based lane departure assistance system. Journal of Mechanical Engineering, 2018, 54(16): 134-143 doi: 10.3901/JME.2018.16.134
    [10] 冯学强, 张良旭, 刘志宗. 无人驾驶汽车的发展综述. 山东工业技术, 2015, 2015(05): 51

    Feng Xue-Qiang, Zhang Liang-Xu, Liu Zhi-Zong. Overview of the development of driverless cars. Shandong Industrial Technology, 2015, 2015(05): 51
    [11] 余天洪, 王荣本, 顾柏园, 郭烈. 基于机器视觉的智能车辆前方道路边界及车道标识识别方法综述. 公路交通科技, 2006, 2006(01): 139-142+158 doi: 10.3969/j.issn.1002-0268.2006.01.034

    Yu Tian-Hong, Wang Rong-Ben, Gu Bai Yuan, Guo Lie. Survey on the vision-based recognition methods of intelligent vehicle road boundaries and lane markings. Journal of Highway and Transportation, 2006, 2006(01): 139-142+158 doi: 10.3969/j.issn.1002-0268.2006.01.034
    [12] Aly M. Real time detection of lane markers in urban streets. In: Proceedings of the 2008 Intelligent Vehicles Symposium. Eindhoven, the Netherlands: IEEE, 2008. 7−12
    [13] Turchetto R, Manduchi R. Visual curb localization for autonomous navigation. In: Proceedings of the 2003 International Conference on Intelligent Robots and Systems. Las Vegas, USA: IEEE, 2003. 1336−1342
    [14] Dang H S, Guo C J. Structure lane detection based on saliency feature of color and direction. In: Proceedings of the 2014 International Conference on Advances in Materials Science and Information Technologies in Industry. Xi'an, China: Science, 2014. 2876−2879
    [15] Du X X, Tan K K, Htet K K K. Vision-based lane line detection for autonomous vehicle navigation and guidance. In: Proceedings of the 10th Asian Control Conference. Kota Kinabalu, Malaysia: IEEE, 2015. 1−5
    [16] 李彦冬, 郝宗波, 雷航. 卷积神经网络研究综述. 计算机应用, 2016, 36(09): 2508-2515

    Li Yan-Dong, Hao Zong-Bo, Lei Hang. Survey of convolutional neural network. Journal of Computer Applications, 2016, 36(09): 2508-2515
    [17] 李茂晖, 吴传平, 鲍艳, 房卓群. 论YOLO算法在机器视觉中应用原理. 教育现代化, 2018, 5(41): 174-176

    Li Mao-Hui, Wu Chuan-Ping, Bao Yan, Fang Zhuo-Qun. On the application principle of YOLO algorithm in machine vision. Journal of Computer Applications, 2018, 5(41): 174-176
    [18] Girshick R, Donahue J, Darrell T, Malik J. Rich feature hierarchies for accurate object detection and semantic segmentation. In: Proceedings of the 2014 Conference on Computer Vision and Pattern Recognition. Columbus, OH, USA: IEEE, 2014. 580−587
    [19] Girshick R. Fast R-CNN. In: Proceedings of the 2015 International Conference on Computer Vision. Santiago, Chile: IEEE, 2015. 1440−1448
    [20] Ren S, He K, Girshick R, Sun J. Faster R-CNN: towards real-time object detection with region proposal networks. Pattern Analysis and Machine Intelligence, 2017, 39(60): 1137-1149
    [21] Kim J, Lee M. Robust lane detection based on convolutional neural network and random sample consensus. In: Proceedings of the 2014 International Conference on Neural Information Progressing. Springer, Cham: 2014. 454−461
    [22] Redmon J, Divvala S, Girshick R, Farhadi A. You only look once: Unified, real-time object detection. In: Proceedings of the 2016 Conference on Computer Vision and Pattern Recognition. Las Vegas, NV, USA: IEEE, 2016. 779−788
    [23] Redmon J, Farhadi A. YOLO9000: Better, faster, stronger. In: Proceedings of the 2017 Conference on Computer Vision and Pattern Recognition. Honolulu, HI, USA: IEEE, 2017. 6517−6525
    [24] 魏湧明, 全吉成, 侯宇青阳. 基于YOLO v2的无人机航拍图像定位研究. 激光与光电子学进展, 2017, 54(11): 101-110

    Wei Yong-Ming, Quan Ji-Cheng, Hou Yu-Qing-Yang. Aerial image location of unmanned aerial vehicle based on YOLO v2. Laser and Optoelectronics Progress, 2017, 54(11): 101-110
    [25] Lee S, Kim J, Yoon J S, Shin S, Bailo O, Kim N, et al. VPGNet: Vanishing point guide network for lane and road marking detection and recognition. In: Proceedings of the 2017 International Conference on Computer Vision. Venice, Italy: IEEE, 2017. 1965−1973
    [26] Redmon J, Farhadi A. YOLOv3: An incremental improvement. In: Proceedings of the 2018 Conference on Computer Vision and Pattern Recognition. Salt Lake City, USA: 2018. 1−4
  • 加载中
图(9) / 表(2)
计量
  • 文章访问数:  1684
  • HTML全文浏览量:  1044
  • PDF下载量:  580
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-03-21
  • 录用日期:  2019-05-23
  • 网络出版日期:  2022-03-27
  • 刊出日期:  2022-06-02

目录

    /

    返回文章
    返回