2.845

2023影响因子

(CJCR)

  • 中文核心
  • EI
  • 中国科技核心
  • Scopus
  • CSCD
  • 英国科学文摘

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于眼优势的非对称失真立体图像质量评价

唐祎玲 江顺亮 徐少平 刘婷云 李崇禧

唐祎玲, 江顺亮, 徐少平, 刘婷云, 李崇禧. 基于眼优势的非对称失真立体图像质量评价. 自动化学报, 2019, 45(11): 2092-2106. doi: 10.16383/j.aas.c190124
引用本文: 唐祎玲, 江顺亮, 徐少平, 刘婷云, 李崇禧. 基于眼优势的非对称失真立体图像质量评价. 自动化学报, 2019, 45(11): 2092-2106. doi: 10.16383/j.aas.c190124
TANG Yi-Ling, JIANG Shun-Liang, XU Shao-Ping, LIU Ting-Yun, LI Chong-Xi. Asymmetrically Distorted Stereoscopic Image Quality Assessment Based on Ocular Dominance. ACTA AUTOMATICA SINICA, 2019, 45(11): 2092-2106. doi: 10.16383/j.aas.c190124
Citation: TANG Yi-Ling, JIANG Shun-Liang, XU Shao-Ping, LIU Ting-Yun, LI Chong-Xi. Asymmetrically Distorted Stereoscopic Image Quality Assessment Based on Ocular Dominance. ACTA AUTOMATICA SINICA, 2019, 45(11): 2092-2106. doi: 10.16383/j.aas.c190124

基于眼优势的非对称失真立体图像质量评价

doi: 10.16383/j.aas.c190124
基金项目: 

江西省自然科学基金 20171BAB202017

国家自然科学基金 61163023

国家自然科学基金 61662044

国家自然科学基金 51765042

详细信息
    作者简介:

    唐祎玲  南昌大学信息工程学院博士研究生.2007年获得南昌大学信息工程学院计算机科学与技术系硕士学位.主要研究方向为图像处理与机器学习.E-mail:tangyiling@ncu.edu.cn

    江顺亮  南昌大学信息工程学院计算机系教授.主要研究方向为数据结构与启发式优化技术.E-mail:jiangshunliang@ncu.edu.cn

    刘婷云  南昌大学信息工程学院硕士研究生.主要研究方向为图像处理与机器学习.E-mail:416114517210@email.ncu.edu.cn

    李崇禧  南昌大学信息工程学院硕士研究生.主要研究方向为图像处理与计算机视觉.E-mail:406130917315@email.ncu.edu.cn

    通讯作者:

    徐少平  南昌大学信息工程学院计算机系教授.主要研究方向为数字图像处理与分析, 计算机图形学, 虚拟现实, 手术仿真.本文通信作者.E-mail:xushaoping@ncu.edu.cn

Asymmetrically Distorted Stereoscopic Image Quality Assessment Based on Ocular Dominance

Funds: 

Natural Science Foundation of Jiangxi Province 20171BAB202017

National Natural Science Foundation of China 61163023

National Natural Science Foundation of China 61662044

National Natural Science Foundation of China 51765042

More Information
    Author Bio:

    Ph. D. candidate at the School of Information Engineering, Nanchang University. She received her master degree from Nanchang University in 2007. Her research interest covers image processing and machine learning

    Professor in Computer Science and Technology Department, School of Information Engineering, Nanchang University. His research interest covers concurrent data structures and heuristic optimization techniques

    Master student at the School of Information Engineering, Nanchang University. Her research interest covers image processing and machine learning

    Master student at the School of Information Engineering, Nanchang University. His research interest covers image processing and computer vision

    Corresponding author: XU Shao-Ping Professor in Computer Science and Technology Department, School of Information Engineering, Nanchang University. His research interest covers digital image processing and analysis, computer graphics, virtual reality, surgery simulation. Corresponding author of this paper
  • 摘要: 针对现有立体图像质量评价算法对非对称失真立体图像的评价准确性及执行效率较低的问题,提出一种基于眼优势的非对称失真立体图像质量评价算法.首先采用梯度幅值响应来模拟左右眼输入的刺激强度,并根据人类视觉系统的眼优势原理分别以左和右视点图像作为主视图合成两幅融合图像;其次,利用旋转不变统一局部二值模式直方图、皮尔逊线性相关系数以及非对称广义高斯模型,获取左右融合图像以及左右梯度幅值响应图像中的多种能够反映立体图像质量好坏的特征;最后,利用自适应增强的支持向量回归模型将感知特征向量映射为图像质量值.在四个基准测试数据库上的实验结果表明:本文所提出算法大幅提升了非对称失真立体图像的评价准确性,且具有较高的执行效率.这些优势说明本文算法所提取的特征描述能力更强,质量映射模型的稳定性更好.
    1)  本文责任编委  刘跃虎
  • 图  1  基于眼优势的非对称失真立体图像质量评价算法框图

    Fig.  1  The diagram of asymmetrically distorted SIQA algorithm based on ocular dominance

    图  2  失真图像及其GMRI和Gabor滤波图像

    Fig.  2  The distorted image, the GMRI, and the Gabor response image

    图  3  猕猴视觉皮层的横截面示意图

    Fig.  3  A cross section through striate cortex in macaque monkey

    图  4  各类失真图像及其左右融合图像(从左至右的图像依次为左视点、右视点、左融合和右融合图像)

    Fig.  4  The distorted images and their left and right fusion images for various distortion types (Images from left to right are left view, right view, left fusion image, and right fusion image)

    图  5  各类失真图像的左右融合图像的RIU-LBP直方图

    Fig.  5  RIU-LBP histograms of the left and right fusion images for different distortion types

    图  6  左和右融合图像的邻域像素之间PLCC值取值变化图

    Fig.  6  The variation of the PLCC values between neighboring pixels in the left and right fusion images

    图  7  归一化GMRIs的统计分布(以右视点为例)

    Fig.  7  The distribution of normalized GMRIs (take the right view as an example)

    图  8  GMRI在水平方向的邻域像素乘积图统计分布(以右视点为例)

    Fig.  8  The distribution of the neighboring products of GMRI along horizontal direction (take the right view as an example)

    图  9  基于Adaboost-SVR的预测模型

    Fig.  9  AdaBoost-SVR based prediction model

    图  10  各对比算法在IVC Phase Ⅰ数据库上预测值与MOS值的散点分布图

    Fig.  10  The scatter plots of the MOS values versus the quality scores predicted by the competing algorithms on IVC Phase Ⅰ database

    图  11  采用不同个数SVR在独立数据库和交叉数据库验证的结果对比

    Fig.  11  The comparison of experiments on individual and cross database tests when using different numbers of SVR

    表  1  失真立体图像的两幅融合图像与左右视点图像之间的相似性和相关性

    Table  1  The similarity and correlation between the two fusion images and the stereo pair

    图像 相似性 相关性
    对称失真 非对称失真 混合 对称失真 非对称失真 混合
    I-L I-R I-L I-R I-L I-R I-L I-R I-L I-R I-L I-R
    FI-L 0.6404 0.4091 0.6726 0.3946 0.6555 0.3969 0.7561 0.5815 0.8134 0.5493 0.7950 0.5531
    FI-R 0.4047 0.6264 0.3971 0.6135 0.4005 0.6214 0.5705 0.7481 0.5766 0.7205 0.5766 0.7448
    下载: 导出CSV

    表  2  各算法在基准测试数据库中的非对称失真图像部分预测结果比较

    Table  2  The comparison between SIQA algorithms on the asymmetrically distorted images in benchmark databases

    算法 IVC Phase Ⅰ (252) IVC Phase Ⅱ (330) LIVE Phase Ⅱ (280)
    SROCC PLCC RMSE SROCC PLCC RMSE SROCC PLCC RMSE
    SS[25] 0.5372 0.5427 11.1710 0.4029 0.4080 16.3354 0.7694 0.7691 6.9152
    MS[31] 0.5109 0.5206 11.1025 0.4501 0.4583 15.8435 0.7207 0.6294 7.4424
    BR[27] 0.9349 0.9453 4.8005 0.9206 0.9377 6.4756 0.9336 0.9410 3.8740
    CF[14] 0.4147 0.4575 11.9912 0.3302 0.3407 16.2554 0.8883 0.7701 4.8922
    ID[9] 0.9383 0.9493 4.5700 0.9310 0.9392 6.2879 0.9019 0.8981
    SI[18] 0.9336 0.9481 4.6602 0.9217 0.9343 6.6306 0.9402 0.9457 3.6905
    文献[32] 0.8600 0.8740 0.8010 0.8440 0.8920 0.9570
    ODAD 0.9595 0.9692 3.5685 0.9643 0.9703 4.4826 0.9397 0.9482 3.6014
    下载: 导出CSV

    表  3  各算法在基准测试数据库中的对称失真图像部分预测结果比较

    Table  3  The comparison between SIQA algorithms on the symmetrically distorted images in benchmark databases

    算法 IVC Phase Ⅰ (78) IVC Phase Ⅱ (130) LIVE Phase Ⅱ (80)
    SROCC PLCC RMSE SROCC PLCC RMSE SROCC PLCC RMSE
    SS[25] 0.7517 0.7082 9.5359 0.5933 0.5775 13.2300 0.8447 0.8360 5.8319
    MS[31] 0.6416 0.6298 10.6055 0.5169 0.5263 13.7357 0.9185 0.7951 4.1896
    BR[27] 0.9393 0.9655 5.4399 0.9460 0.9611 5.7405 0.9147 0.9336 4.2804
    CF[14] 0.7361 0.7944 9.9160 0.4864 0.5247 14.1269 0.9173 0.8134 4.0668
    ID[9] 0.9669 0.9778 3.7110 0.9696 0.9802 4.0223 0.9234 0.9372
    SI[18] 0.9464 0.9696 5.0625 0.9463 0.9593 5.7976 0.9235 0.9433 3.9317
    文献[32] 0.9100 0.9020 0.9140 0.9150 0.9280 0.9350
    ODAD 0.9464 0.9682 5.1764 0.9672 0.9700 4.4689 0.9071 0.9287 4.4932
    下载: 导出CSV

    表  4  各算法在对称与非对称失真数据库上的预测结果比较

    Table  4  The comparison between SIQA algorithms on the symmetrically and asymmetrically distorted databases

    算法 IVC Phase Ⅰ (330) IVC Phase Ⅱ (460) LIVE Phase Ⅱ (360)
    SROCC PLCC RMSE SROCC PLCC RMSE SROCC PLCC RMSE
    SS[25] 0.5963 0.6074 11.0735 0.4671 0.4749 15.9686 0.7925 0.7835 6.2681
    MS[31] 0.5479 0.5647 11.2988 0.4749 0.4868 15.7450 0.7707 0.6594 6.9380
    BR[27] 0.9352 0.9501 4.9508 0.9326 0.9453 6.2938 0.9375 0.9427 3.8404
    CF[14] 0.5690 0.6740 11.6230 0.4440 0.5690 15.7400 0.9013 0.7781 4.7464
    CN[15] 0.9110 0.9260 6.2320 0.8840 0.8820 8.9610 0.8800 0.8800 5.1020
    Su[16] 0.9050 0.9130 4.6570
    ID[9] 0.9502 0.9609 4.3588 0.9437 0.9533 5.7809 0.9159 0.9188
    SI[18] 0.9442 0.9570 4.6212 0.9369 0.9488 6.0713 0.9471 0.9519 3.5482
    文献[32] 0.9040 0.8980 0.8900 0.8660 0.9180 0.8950 3.2100
    文献[33] 0.9233 0.9297
    ODAD 0.9645 0.9729 3.4945 0.9696 0.9745 4.1355 0.9403 0.9453 3.4609
    下载: 导出CSV

    表  5  各算法在LIVE Phase Ⅰ数据库上的SROCC、PLCC和RMSE比较

    Table  5  The comparison between SIQA algorithms in terms of SROCC, PLCC, and RMSE on LIVE Phase Ⅰ database

    指标 SS[25] MS[31] BR[27] CF[14] SU[16] CN[15] SI[18] 文献[33] ODAD
    SROCC 0.8763 0.9276 0.9486 0.9157 0.8910 0.9030 0.9584 0.9423 0.9596
    PLCC 0.8606 0.8353 0.9566 0.8337 0.8950 0.9220 0.9641 0.9401 0.9665
    RMSE 7.9003 5.8871 4.8267 6.2681 4.3864 4.0745
    下载: 导出CSV

    表  6  交叉验证实验结果

    Table  6  The experimental results on cross database tests

    算法 IVC Phase Ⅰ LIVE Phase Ⅱ
    LIVE Phase Ⅰ LIVE Phase Ⅱ IVC Phase Ⅱ LIVE Phase Ⅰ IVC Phase Ⅰ IVC Phase Ⅱ
    SROCC PLCC SROCC PLCC SROCC PLCC SROCC PLCC SROCC PLCC SROCC PLCC
    BR[27] 0.5878 0.6129 0.3168 0.2999 0.8413 0.8699 0.6568 0.6708 0.7585 0.7978 0.5344 0.5239
    SI[18] 0.6248 0.6515 0.3311 0.3324 0.8165 0.8419 0.9054 0.9045 0.6694 0.6470 0.4854 0.4748
    ODAD 0.5784 0.6360 0.3542 0.3591 0.8390 0.8458 0.9048 0.9050 0.6133 0.5785 0.6123 0.6057
    下载: 导出CSV

    表  7  各部分特征对ODAD算法性能影响

    Table  7  The influence of each part of features on the performance of ODAD

    算法 LIVE Phase Ⅰ LIVE Phase Ⅱ IVC Phase Ⅰ IVC Phase Ⅱ
    SROCC PLCC RMSE SROCC PLCC RMSE SROCC RMSE PLCC RMSE SROCC RMSE
    ODAD-GM 0.9531 0.9587 4.6525 0.9400 0.9452 3.9110 0.9556 0.9618 4.3948 0.9589 0.9651 5.0795
    ODAD-CL 0.9586 0.9629 4.5157 0.9401 0.9458 3.6589 0.9546 0.9647 4.1464 0.9582 0.9655 5.1122
    ODAD-CR 0.9585 0.9645 4.3886 0.9400 0.9453 3.7114 0.9519 0.9641 4.2672 0.9560 0.9645 5.2156
    ODAD-148 0.9570 0.9631 4.5024 0.9408 0.9468 3.7199 0.9536 0.9647 4.2296 0.9566 0.9646 5.0769
    ODAD 0.9596 0.9665 4.0745 0.9403 0.9453 3.4609 0.9645 0.9729 3.4945 0.9696 0.9745 4.1355
    下载: 导出CSV
  • [1] Su C C, Moorthy A K, Bovik A C. Visual quality assessment of stereoscopic image and video:challenges, advances, and future trends. Visual Signal Quality Assessment, Cham, Springer, 2015. 185-212
    [2] 王志明.无参考图像质量评价综述.自动化学报, 2015, 41(6):1062-1079 http://www.aas.net.cn/CN/abstract/abstract18682.shtml

    Wang Zhi-Ming. Review of no-reference image quality assessment. Acta Automatica Sinica, 2015, 41(6):1062-1079 http://www.aas.net.cn/CN/abstract/abstract18682.shtml
    [3] 徐少平, 林官喜, 曾小霞, 姜尹楠, 唐祎玲.立体图像质量感知特征提取的研究进展.计算机工程, 2018, 44(6):239-248 doi: 10.3969/j.issn.1000-3428.2018.06.041

    Xu Shao-Ping, Lin Guan-Xi, Zeng Xiao-Xia, Jiang Yin-Nan, Tang Yi-Ling. Quality-aware feature extraction in the stereoscopic image quality assessment algorithm. Computer Engineering, 2018, 44(6):239-248 doi: 10.3969/j.issn.1000-3428.2018.06.041
    [4] 陈勇, 吴明明, 房昊, 刘焕淋.基于差异激励的无参考图像质量评价[网络出版].自动化学报, http://kns.cnki.net, 2019年1月22日

    Chen Yong, Wu Ming-Ming, Fang Hao, Liu Huan-Lin. No-reference image quality assessment based on differential excitation[Online]. Acta Automatica Sinica, available:http://kns.cnki.net, January 22, 2019
    [5] Campisi P, Callet P L, Marint E. Stereoscopic images quality assessment. In:Proceedings of the 15th European Signal Processing. Poznan, Poland:IEEE, 2007. 2110-2114
    [6] 张明琦, 范影乐, 武薇.基于初级视通路视觉感知机制的轮廓检测方法[网络出版].自动化学报, http://kns.cnki.net, 2018年10月11日

    Zhang Ming-Qi, Fan Ying-Le, Wu Wei. A contour detection method based on visual perception mechanism in primary visual pathway[Online]. Acta Automatica Sinica, available:http://kns.cnki.net, October 11, 2018
    [7] Hubel D H, Wiesel T N. Ferrier Lecture:functional architecture of macaque monkey visual cortex. Proceedings of the Royal Society B:Biological Sciences, 1977, 198(1130):1-59 doi: 10.1098/rspb.1977.0085
    [8] Menon R S, Ogawa S, Strupp J P, Ugurbil K. Ocular dominance in human V1 demonstrated by functional magnetic resonance imaging. Journal of Neurophysiology, 1997, 77(5):2780-2787 doi: 10.1152/jn.1997.77.5.2780
    [9] Wang J, Zeng K, Wang Z. Quality prediction of asymmetrically distorted stereoscopic images from single views. In:Proceeding of the 2014 IEEE International Conference on Multimedia and Expo. Chengdu, Sichuan, China:IEEE, 2014. 14-18
    [10] Shao F, Zhang Z, Jiang Q, Lin W, Jiang G. Toward domain transfer for no-reference quality prediction of asymmetrically distorted stereoscopic images. IEEE Transactions on Circuits and Systems for Video Technology, 2018, 28(3):573-585 doi: 10.1109/TCSVT.2016.2628082
    [11] Zhou W, Zhang S, Pan T, Yu L, Qiu W, Zhou Y, et al. Blind 3D image quality assessment based on self-similarity of binocular features. Neurocomputing, 2017, 224(8):128-134 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=f025746f01fdff2db844e62be75977cf
    [12] Shao F, Lin W, Jiang G, Dai Q. Models of monocular and binocular visual perception in quality assessment of stereoscopic images. IEEE Transactions on Computational Imaging, 2016, 2(2):123-135 doi: 10.1109/TCI.2016.2538720
    [13] Maalouf A, Larabi M C. CYCLOP:a stereo color image quality assessment metric. In:Proceedings of the 2011 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP). Prague, Czech Republic:IEEE, 2011. 1161-1164
    [14] Chen M J, Su C C, Kwon D K, Cormack L K, Bovik A C. Fullreference quality assessment of stereopairs accounting for rivalry. Signal Processing:Image Communication, 2013, 28(9):1143-1155 doi: 10.1016/j.image.2013.05.006
    [15] Chen M J, Cormack L K, Bovik A C. No-reference quality assessment of natural stereopairs. IEEE Transactions on Image Processing, 2013, 22(9):3379-3391 doi: 10.1109/TIP.2013.2267393
    [16] Su C C, Cormack L K, Bovik A C. Oriented correlation models of distorted natural images with application to natural stereopair quality evaluation. IEEE Transactions on Image Processing, 2015, 24(5):1685-1699 doi: 10.1109/TIP.2015.2409558
    [17] Shen L, Fang R, Yao Y, Geng X, Wu D. No-reference stereoscopic image quality assessment based on image distortion and stereo perceptual information. IEEE Transactions on Emerging Topics in Computational Intelligence, 2019, 3(1):59-72 doi: 10.1109/TETCI.2018.2804885
    [18] Liu L, Liu B, Su C C, Huang H, Bovik A C. Binocular spatial activity and reverse saliency driven no-reference stereopair quality assessment. Signal Processing Image Communication, 2017, 58(10):287-299 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=daf1d34098fc5b22df02bd3586ef4ee0
    [19] 杨小康, 刘敏, 翟广涛, 顾锞.基于非线性眼优势视差补偿的立体图像质量评价方法. CN, Patent 104240255A, 2014年12月24日

    Yang Xiao-Kang, Liu Min, Zhai Guang-Tao, Gu Ke. Stereoscopic image quality evaluation method based on nonlinear ocular dominance parallax compensation. CN Patent 104240255A. December 24, 2014
    [20] 杨小康, 刘敏, 翟广涛, 顾锞.基于眼优势理论和视差补偿的立体图像质量评价方法. CN Patent 104243977B. 2014年12月24日

    Yang Xiao-Kang, Liu Min, Zhai Guang-Tao, Gu Ke. Stereoscopic image quality evaluation method based on ocular dominance theory and parallax compensation. CN Patent 104243977B. December 24, 2014
    [21] Ojala T, Pietikainen M, Maenpaa T. Multiresolution gray-scale and rotation invariant texture classification with local binary patterns. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2002, 24(7):971-987 doi: 10.1109/TPAMI.2002.1017623
    [22] Zhou W, Yu L, Qiu W, Zhou Y, Wu M. Local gradient patterns (LGP):an effective local-statistical-feature extraction scheme for no-reference image quality assessment. Information Sciences, 2017, 397-398:1-14 doi: 10.1016/j.ins.2017.02.049
    [23] Oszust M. No-Reference image quality assessment using image statistics and robust feature descriptors. IEEE Signal Processing Letters, 2017, 24(11):1656-1660 doi: 10.1109/LSP.2017.2754539
    [24] Hubel D H, Wiesel T N. Receptive fields, binocular interaction and functional architecture in the cat's visual cortex. The Journal of Physiology, 1962, 160(1):106-154 doi: 10.1113/jphysiol.1962.sp006837
    [25] Wang Z, Bovik A C, Sheikh H R, Simoncelli E P. Image quality assessment:from error visibility to structural similarity. IEEE Transaction Image Processing, 2004, 13(4):600-612 doi: 10.1089-fpd.2009.0394/
    [26] Wang J, Rehman A, Zeng K, Wang S, Wang Z. Quality prediction of asymmetrically distorted stereoscopic 3D images. IEEE Transactions on Image Processing, 2015, 24(11):3400-3414 doi: 10.1109/TIP.2015.2446942
    [27] Mittal A, Moorthy A K, Bovik A C. No-reference image quality assessment in the spatial domain. IEEE Transactions on Image Processing, 2012, 21(12):4695-4708 doi: 10.1109/TIP.2012.2214050
    [28] Moorthy A K, Su C C, Mittal A, Bovik A C. Subjective evaluation of stereoscopic image quality. Signal Processing:Image Communication, 2013, 28(8):870-883 doi: 10.1016/j.image.2012.08.004
    [29] Singer W, Gray C M. Visual feature integration and the temporal correlation hypothesis. Annual Review of Neuroscience, 1995, 18(1):555-586 doi: 10.1146/annurev.ne.18.030195.003011
    [30] Chang C C, Lin C J. LIBSVM:a library for support vector machines. ACM Transactions on Intelligent Systems and Technology, 2011, 2(3):Article No.27 http://d.old.wanfangdata.com.cn/Periodical/jdq201315008
    [31] Wang Z, Simoncelli E R, Bovik A C. Multiscale structural similarity for image quality assessment. In:Proceedings of IEEE 37th asilomar conference on Signals, Systems and Computers, CA, USA:Pacific Grove, 2004. 1398-1402 https://ieeexplore.ieee.org/document/1292216
    [32] Fezza S A, Chetouani A, Larabi M C. Using distortion and asymmetry determination for blind stereoscopic image quality assessment strategy. Journal of Visual Communication and Image Representation, 2017, 49:115-128 doi: 10.1016/j.jvcir.2017.08.009
    [33] Ding Y, Deng R, Xie X, Xu X, Zhao Y, Chen X, et al. No-reference stereoscopic image quality assessment using convolutional neural network for adaptive feature extraction. IEEE Access, 2018, 6:37595-37603 doi: 10.1109/ACCESS.2018.2851255
  • 加载中
图(11) / 表(7)
计量
  • 文章访问数:  2232
  • HTML全文浏览量:  421
  • PDF下载量:  138
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-03-04
  • 录用日期:  2019-06-24
  • 刊出日期:  2019-11-20

目录

    /

    返回文章
    返回