2.793

2018影响因子

(CJCR)

  • 中文核心
  • EI
  • 中国科技核心
  • Scopus
  • CSCD
  • 英国科学文摘

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

一类p规范型非线性系统预设性能有限时间H 跟踪控制

李小华 胡利耀

李小华, 胡利耀. 一类p规范型非线性系统预设性能有限时间H∞ 跟踪控制. 自动化学报, 2021, 47(12): 1−11 doi: 10.16383/j.aas.c190116
引用本文: 李小华, 胡利耀. 一类p规范型非线性系统预设性能有限时间H 跟踪控制. 自动化学报, 2021, 47(12): 1−11 doi: 10.16383/j.aas.c190116
Li Xiao-Hua, Hu Li-Yao. Prescribed performance finite-time H∞ tracking control for a class of p-normal form nonlinear systems. Acta Automatica Sinica, 2021, 47(12): 1−11 doi: 10.16383/j.aas.c190116
Citation: Li Xiao-Hua, Hu Li-Yao. Prescribed performance finite-time H tracking control for a class of p-normal form nonlinear systems. Acta Automatica Sinica, 2021, 47(12): 1−11 doi: 10.16383/j.aas.c190116

一类p规范型非线性系统预设性能有限时间H 跟踪控制

doi: 10.16383/j.aas.c190116
基金项目: 国家自然科学基金(61403177), 辽宁省科技厅自然科学基金(20180550319), 辽宁科技大学研究生教育改革和科技创新项目(LKDYC201812)资助
详细信息
    作者简介:

    李小华:辽宁科技大学电子与信息工程学院教授. 主要研究方向为复杂系统结构与控制, 非线性控制理论与应用, 工业过程建模与控制. 本文通信作者. E-mail: lixiaohua6412@163.com

    胡利耀:辽宁科技大学电子与信息工程学院硕士研究生. 主要研究方向为非线性系统控制, 有限时间控制. E-mail: huliyao1995@163.com

Prescribed Performance Finite-time H Tracking Control for a Class of p-normal Form Nonlinear Systems

Funds: Supported by National Natural Science Foundation of China (61403177), Natural Science Fund Project of Liaoning Province (20180550319), and Graduate Education Reform and Science Technology Innovation Project of University of Science and Technology Liaoning (LKDYC201812)
More Information
    Author Bio:

    LI Xiao-Hua Professor at the School of Electronic and Information Engineering, University of Science and Technology Liaoning. Her research interest covers structure and control of complex systems, nonlinear control theory and application, and industrial process modeling and control. Corresponding author of this paper

    HU Li-Yao Master student at the School of Electronic and Information Engineering, University of Science and Technology Liaoning. His research interest covers control of nonlinear system and finite-time control

  • 摘要: 针对一类带有外部扰动的非严格反馈p规范型非线性系统, 在一种新的预设性能控制思想的基础上, 结合加幂积分技术、H 控制理论及神经自适应技术, 提出了一种自适应神经预设性能有限时间H 跟踪控制器的设计方法. 所设计的控制器能够保证系统的跟踪误差被有限时间性能函数约束, 并在任意给定的停息时间内收敛到平衡点的一个预先给定的邻域内. 且能够抑制外部扰动对系统的影响. 特别地, 该停息时间与系统初始状态无关. 两个仿真例子验证了所设计控制器的有效性和优越性.
  • 图  1  跟踪误差$e_{1}$

    Fig.  1  The tracking error $e_{1}$

    图  2  系统输出$y$跟踪效果

    Fig.  2  The tracking effects of the system output $y$

    图  3  无外部扰动时状态$x_{1}$

    Fig.  3  The state $x_{1}$ without external disturbances

    图  5  文献 [22]方法的控制输入$u$

    Fig.  5  The control input $u$ of the method in [22]

    图  4  本文方法的控制输入$u$

    Fig.  4  The control input $u$ of the method in this paper

    图  6  存在外部扰动时状态$x_{1}$

    Fig.  6  The state $x_{1}$ with external disturbances

    图  8  文献 [22]方法的控制输入$u$

    Fig.  8  The control input $u$ of the method in [22]

    图  7  本文方法的控制输入$u$

    Fig.  7  The control input $u$ of the method in this paper

    图  9  状态$x_{1}$

    Fig.  9  The state $x_{1}$

    图  10  外部扰动$w_1(t)$

    Fig.  10  The external disturbance $w_1(t)$

  • [1] 耿志勇. 基于庞特里亚金极小值原理的多运载体有限时间编队控制. 自动化学报, 2017, 43(1): 40-59

    Geng Zhi-Yong. Finite time formation control for multiple vehicles based on pontryagin’s minimum principle. Acta Automatica Sinica, 2017, 43(1): 40-59(in Chinese)
    [2] Mo L P, Yu Y G. Finite-time rotating encirclement control of multi-agent systems. Acta Automatica Sinica, 2017, 43(9): 183-190
    [3] Liu H, Shen Y, Zhao X D. Finite-time stabilization and boundedness of switched linear system under statedependent switching. Journal of the Franklin Institute, 2013, 350(3): 541-555 doi: 10.1016/j.jfranklin.2012.12.014
    [4] Zheng S Q, Li W J. Fuzzy finite time control for switched systems via adding a barrier power integrator. IEEE Transactions on Cybernetics, 2018, (99): 1-14
    [5] 李小华, 刘洋, 刘晓平. 一类扩展结构大系统的分散有限时间鲁棒关联镇定. 控制与决策, 2015, 30(11): 1967-1973

    Li Xiao-Hua, Liu Yang, Liu Xiao-Ping. Decentralized finite-time robust connective stabilization for a class of large-scale systems with expanding construction. Control and Decision, 2015, 30(11): 1967-1973(in Chinese)
    [6] Wang Z, Li S H, Fei S M. Finite-time tracking control of a nonholonomic mobile robot. Asian Journal of Control, 2009, 11(3): 344-357 doi: 10.1002/asjc.v11:3
    [7] Du H B, Li S H, Qian C J. Finite-time attitude tracking control of spacecraft with application to attitude synchronization. IEEE Transactions on Automatic Control, 2011, 56(11): 2711-2717 doi: 10.1109/TAC.2011.2159419
    [8] Tian B L, Lu H C, Zuo Z Y, Zong Q, Zhang Y P. Multivariable finite-time output feedback trajectory tracking control of quadrotor helicopters. International Journal of Robust and Nonlinear Control, 2017, 28(1): 281-295
    [9] Huang S P, Xiang Z R. Finite-time output tracking for a class of switched nonlinear systems. International Journal of Robust and Nonlinear Control, 2017, 27(6): 1017- 1038 doi: 10.1002/rnc.v27.6
    [10] 陈明, 张士勇. 基于Backstepping的非线性系统预设性能鲁棒控制器设计. 控制与决策, 2015, 30(5): 877-881

    Chen Ming, Zhang Shi-Yong. Prescribed performance robust controller design for nonlinear systems based on backstepping. Control and Decision, 2015, 30(5): 877-881(in Chinese)
    [11] Guan Z Y, Ma Y P, Zheng Z W, Guo N. Prescribed performance control for automatic carrier landing with disturbance. Nonlinear Dynamics, 2018, 94(2): 1-15
    [12] Wang M, Wang C, Liu X P. Dynamic learning from adaptive neural control with predefined performance for a class of nonlinear systems. Information Sciences, 2014, 279: 874-888 doi: 10.1016/j.ins.2014.04.038
    [13] Jing Y W, Liu Y, Zhou S W. Prescribed performance finite-Time tracking control for uncertain nonlinear systems. Journal of Systems Science and Complexity, 2018. DOI: 10.1007/s11424-018-7287-5
    [14] Zhang J X, Yang G H. Prescribed performance faulttolerant control of uncertain nonlinear systems with unknown control directions. IEEE Transactions on Automatic Control, 2018, 62(12): 6529-6535
    [15] Liu Y, Liu X P, Jin Y W. Adaptive neural networks finite-time tracking control for non-strict feedback systems via prescribed performance. Information Sciences, 2018, 468: 29-46 doi: 10.1016/j.ins.2018.08.029
    [16] Yang B, Lin W. Homogeneous observers, iterative design, and global stabilization of high-order nonlinear systems by smooth output feedback. IEEE Transactions on Automatic Control, 2004, 49(7): 1069-1080 doi: 10.1109/TAC.2004.831186
    [17] Zhang H B, Feng G, Dang C Y. An approach to H control of a class of nonlinear stochastic systems. Circuits Systems & Signal Processing, 2012, 31(1): 127-141
    [18] Yang H, Wang Z D, Shu H S, Alsaadi E, Hayat T. Almost sure H sliding mode control for nonlinear stochastic systems with markovian switching and timedelays. Neurocomputing, 2016, 175(PA): 392-400
    [19] Li X H, Liu X P. Backstepping-based decentralized adaptive neural H control for a class of large-scale nonlinear systems with expanding construction. Nonlinear Dynamics, 2017, 90(2): 1373-1392 doi: 10.1007/s11071-017-3733-5
    [20] 陆国平, 郑毓蕃. 一类非线性不确定系统的鲁棒H控制. 自动化学报, 1999, 25(3): 388-392

    Lu Guo-Ping, Zheng Yu-Fan. Robust H control for nonlinear systems with parameter uncertainty. Acta Automatica Sinica, 1999, 25(3): 388-392(in Chinese)
    [21] 柴琳, 费树岷, 辛云冰. 一类带未知输入时滞的多时滞非线性系统的对时滞参数的自适应H控制. 自动化学报, 2006, 32(2): 237-245

    Chai Lin, Fei Shu-Min, Xin Yun-Bing. Adaptive H control for a class of nonlinear time-delay systems with uncertain input delay. Acta Automatica Sinica, 2006, 32(2): 237-245(in Chinese)
    [22] Liu Y, Liu X P, Jing Y W, et al. Design of finite-time H controller for uncertain nonlinear systems and its application. International Journal of Control, 2018, DOI: 10.1080/00207179.2018.1466060
    [23] Huang J S, Wen C Y, Wang W, Song Y D. Design of adaptive finite-time controllers for nonlinear uncertain systems based on given transient specifications. Automatica, 2016, 69(C): 395-404
    [24] Sanner R M, Slotine J J E. Gaussian networks for direct adaptive control. IEEE Transactions on Neural Networks. 1992, 3(6): 837-863 doi: 10.1109/72.165588
    [25] Su Y M, Chen B, Lin C, Wang H H, Zhou S W. Adaptive neural control for a class of stochastic nonlinear systems by backstepping approach. Information Sciences, 2016, 369: 748-764 doi: 10.1016/j.ins.2016.06.010
    [26] Drogomir S S. Some Gronwall Type Inequalities and Applications. New York: Nova Science Publishers, 2003.
    [27] Gao F Z, Wu Y Q. Global state feedback stabilisation for a class of more general high-order non-linear systems. IET Control Theory and Applications. 2014, 8(16): 1648-1655 doi: 10.1049/iet-cta.2014.0175
    [28] Matoba S, Nakamura N, Nakamura H, Nishitani H. Robust finite-time control of robot manipulators. In: Proceeding of the 18th World Congress The International Federation of Automatic Control, Milano Italy: IFAC, 2011. 11863−11868
  • 加载中
计量
  • 文章访问数:  59
  • HTML全文浏览量:  19
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-02-27
  • 录用日期:  2019-06-17
  • 网络出版日期:  2021-09-09

目录

    /

    返回文章
    返回