2.845

2023影响因子

(CJCR)

  • 中文核心
  • EI
  • 中国科技核心
  • Scopus
  • CSCD
  • 英国科学文摘

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

虚假数据注入攻击信号的融合估计

翁品迪 陈博 俞立

翁品迪, 陈博, 俞立. 虚假数据注入攻击信号的融合估计. 自动化学报, 2021, 47(9): 2292−2300 doi: 10.16383/j.aas.c190045
引用本文: 翁品迪, 陈博, 俞立. 虚假数据注入攻击信号的融合估计. 自动化学报, 2021, 47(9): 2292−2300 doi: 10.16383/j.aas.c190045
Weng Pin-Di, Chen Bo, Yu Li. Fusion estimate of FDI attack signals. Acta Automatica Sinica, 2021, 47(9): 2292−2300 doi: 10.16383/j.aas.c190045
Citation: Weng Pin-Di, Chen Bo, Yu Li. Fusion estimate of FDI attack signals. Acta Automatica Sinica, 2021, 47(9): 2292−2300 doi: 10.16383/j.aas.c190045

虚假数据注入攻击信号的融合估计

doi: 10.16383/j.aas.c190045
基金项目: 国家自然科学基金(61673351, 61973277)资助
详细信息
    作者简介:

    翁品迪:浙江工业大学硕士研究生. 主要研究方向为信息物理系统中攻击信号的融合检测. E-mail: pwd2gg@aliyun.com

    陈博:浙江工业大学教授. 主要研究方向为信息融合, 安全估计与控制, 信息物理系统. 本文通信作者. E-mail: bchen@aliyun.com

    俞立:浙江工业大学教授. 主要研究方向为网络化控制, 信息融合, 信息物理系统. E-mail: lyu@zjut.edu.cn

Fusion Estimate of FDI Attack Signals

Funds: Supported by National Natural Science Foundation of China (61673351, 61973277)
More Information
    Author Bio:

    WENG Pin-Di Master student at Zhejiang University of Technology. His research interest covers fusion detection of attack signal in cyber physical system

    CHEN Bo Professor at Zhejiang University of Technology. His research interest covers information fusion, security estimate and control, and cyber physical system. Corresponding author of this paper

    YU Li Professor at Zhejiang University of Technology. His research interest covers networked control, information fusion, and cyber physical system

  • 摘要: 研究了信息物理系统中假数据注入(False data injection, FDI)攻击信号的检测问题. 在分布式融合框架下, 首先将FDI攻击信号建模为信息物理系统模型中的未知输入, 从而使得攻击信号的检测问题转化为对FDI攻击信号的实时估计问题. 其次, 在每个传感器端设计基于自适应卡尔曼滤波的FDI攻击信号的局部估计器; 在融合中心端引入补偿因子, 设计分布式信息融合准则以导出攻击信号的融合估计器. 特别地, 当FDI攻击信号是时变情况时, 融合过程中补偿因子的引入可以大大提高对攻击信号的估计精度. 最后, 通过两个仿真算例验证所提算法的有效性.
  • 图  1  算例1: 情况1中攻击信号和融合估计的轨迹

    Fig.  1  Example 1: The trajectories of attack signal and its fusion estimation under Case 1

    图  2  算例1: 情况1中攻击信号的局部估计器与融合估计器之间的性能比较

    Fig.  2  Example 1: The performance comparison between local estimators and fusion estimators under Case 1

    图  3  算例1: 情况2中攻击信号和融合估计轨迹

    Fig.  3  Example 1: The trajectories of attack signal and its fusion estimation under Case 2

    图  4  算例1: 情况2中攻击信号的局部估计器与融合估计器之间的性能比较

    Fig.  4  Example 1: The performance comparison between local estimators and fusion estimators under Case 2

    图  5  算例1: 情况2中不同补偿因子下攻击信号融合估计性能的比较

    Fig.  5  Example 1: The comparison of fusion estimation performance of attack signal under different compensation factors under Case 2

    图  6  算例1: 情况2中不同补偿因子下攻击信号融合估计的轨迹

    Fig.  6  Example 1: The trajectories of fusion estimation of attack signal under different compensation factors under Case 2

    图  7  算例2: 不同补偿因子下攻击信号融合估计的轨迹

    Fig.  7  Example 2: The trajectories of fusion estimation of attack signal under different compensation factors

    图  8  算例2: 不同补偿因子下攻击信号融合估计性能的比较

    Fig.  8  Example 2: The comparison of fusion estimation performance of attack signal under different compensation factors

    图  9  算例2: 攻击信号的局部估计器与融合估计器之间的性能比较

    Fig.  9  Example 2: The performance comparison of attack signal between local estimators and fusion estimators

  • [1] Johansson K H, Pappas G J, Tabuada P, Tomlin C J. Guest editorial special issue on control of cyber-physical systems. IEEE Transactions on Automatic Control, 2014, 59(12): 3120-3121 doi: 10.1109/TAC.2014.2363896
    [2] Fink J, Ribeiro A, Kumar V. Robust control for mobility and wireless communication in cyber-physical systems with application to robot teams. Proceedings on the IEEE, 2012, 100(1): 164-178 doi: 10.1109/JPROC.2011.2161427
    [3] Li H, Lai L, Poor H V. Multicast routing for decentralized control of cyber physical systems with an application in smart grid. IEEE Journal on Selected Areas in Communications, 2012, 30(6): 1097-1107 doi: 10.1109/JSAC.2012.120708
    [4] Langner R. Stuxnet: dissecting a Cyberwarfare Weapon. IEEE Security & Privacy, 2011, 9(3): 49-51
    [5] Hu L, Wang Z, Han Q, Liu X. State estimation under false data injection attacks: Security analysis and system protection. Automatica, 2018, 87: 176-183 doi: 10.1016/j.automatica.2017.09.028
    [6] 艾纳安德尔. 信息物理系统和工业4.0. 智能制造, 2015, 9: 10-12 doi: 10.3969/j.issn.1671-8186.2015.07.002

    Einar Andel. Cyber-physical systems and industry 4.0. Intelligent Manufacturing, 2015, 9: 10-12 doi: 10.3969/j.issn.1671-8186.2015.07.002
    [7] Pasqualetti F, Dorfler F, Bullo F. Attack detection and identification in cyber-physical systems. IEEE Transactions on Automatic Control, 2013, 58(11): 2715-2729 doi: 10.1109/TAC.2013.2266831
    [8] Pang Z, Liu G, Zhou D, Hou F, Sun D. Two-channel false data injection attacks against output tracking control of networked systems. IEEE Transactions on Industrial Electronics, 2016, 63(5): 3242-3251 doi: 10.1109/TIE.2016.2535119
    [9] Chen B, Ho D W C, Zhang W, Yu L. Distributed dimensionality reduction fusion estimation for cyber-physical systems under DoS attacks. IEEE Transactions on Systems, Man, and Cybernetics: Systems, 2019, 49(2): 455-468 doi: 10.1109/TSMC.2017.2697450
    [10] Lai S Y, Chen B, Li T X, Yu L. Packet-based state feedback control under DoS attacks in cyber-physical systems. IEEE Transactions on Circuits and Systems II: Express Briefs, 2019. 66(8): 1421−1425
    [11] Chen B, Ho D W C, Hu G, Yu L. Secure fusion estimation for bandwidth constrained cyber-physical systems under replay attacks. IEEE Transactions on Cybernetics, 2018, 48(6): 1862-1876 doi: 10.1109/TCYB.2017.2716115
    [12] Ding D, Han Q, Xiang Y, Ge X, Zhang X. A survey on security control and attack detection for industrial cyber-physical systems. Neurocomputing, 2018, 275: 1674-1683 doi: 10.1016/j.neucom.2017.10.009
    [13] Liu Y, Ning P, Reiter M K. False data injection attacks against state estimation in electric power grids. ACM Transactions on Information and System Security, 2011, 14(1): 1-33
    [14] Ye N, Zhang Y, Borror C M. Robustness of the Markov-chain model for cyber-attack detection. IEEE Transactions on Reliability, 2004, 53(1): 116-123 doi: 10.1109/TR.2004.823851
    [15] Chorppath A K, Alpcan T, Boche H. Bayesian mechanisms and detection methods for wireless network with malicious users. IEEE Transactions on Mobile Computing, 2016, 15(10): 2452-2465 doi: 10.1109/TMC.2015.2505724
    [16] Kailkhura B, Han Y S, Brahma S, Varshney P K. Distributed Bayesian detection in the presence of byzantine data. IEEE Transactions on Signal Processing, 2015, 63(9): 5250-5263
    [17] Kailkhura B, Han Y S, Brahma S, Varshney P K. Asymptotic analysis of distributed Bayesian detection with byzantine data. IEEE Signal Processing Letters, 2015, 22(5): 608-612 doi: 10.1109/LSP.2014.2365196
    [18] Rawat A S, Anand P, Chen H, Varshney P K. Collaborative spectrum sensing in the presence of byzantine attacks in cognitive radio networks. IEEE Transactions on Signal Processing, 2011, 59(2): 774-786 doi: 10.1109/TSP.2010.2091277
    [19] Manandhar K, Cao X, Hu F, Liu Y. Detection of faults and attacks including false data injection attack in smart grid using kalman filter. IEEE Transactions on Control of Network Systems, 2014, 1(4): 370-379 doi: 10.1109/TCNS.2014.2357531
    [20] Mo Y, Chabukswar R, Sinopoli B. Detecting integrity attacks on SCADA systems. IEEE Transactions on Control Systems Technology, 2014, 22(4): 1396-1407 doi: 10.1109/TCST.2013.2280899
    [21] Rawat D B, Bajracharya C. Detection of false data injection attacks in smart grid communication systems. IEEE Signal Processing Letters, 2015, 22(10): 1652-1656 doi: 10.1109/LSP.2015.2421935
    [22] Liu L, Esmalifalak M, Ding Q, Emesih V A, Han Z. Detecting false data injection attacks on power grid by sparse optimization. IEEE Transactions on Smart Grid, 2014, 5(2): 612-621 doi: 10.1109/TSG.2013.2284438
    [23] Deng R, Xiao G, Lu R. Defending against false data injection attacks on power system state estimation. IEEE Transactions on Industrial Informatics, 2017, 13(1): 198-207 doi: 10.1109/TII.2015.2470218
    [24] Huang Y, Tang J, Cheng Y, Li H, Campbell K A, Han Z. Real-time detection of false data injection in smart grid networks: An adaptive CUSUM method and analysis. IEEE Systems Journal, 2016, 10(2): 532-543 doi: 10.1109/JSYST.2014.2323266
    [25] Zhang Q, Basseville M. Statistical detection and isolation of additive faults in linear time-varying systems. Automatica, 2014, 50(10): 2527-2538 doi: 10.1016/j.automatica.2014.09.004
    [26] Zhang Q. Adaptive Kalman filter for actuator fault diagnosis. Automatica, 2018, 93: 333-342 doi: 10.1016/j.automatica.2018.03.075
    [27] Sun S, Deng Z. Multi-sensor optimal information fusion kalman filter. Automatica, 2004, 40(6): 1017-1023 doi: 10.1016/j.automatica.2004.01.014
    [28] Chen B, Ho D W C, Zhang W, Yu L. Networked Fusion Estimation With Bounded Noises. IEEE Transactions on Automatic Control, 2017, 62(10): 5415-5421 doi: 10.1109/TAC.2017.2696746
  • 加载中
图(9)
计量
  • 文章访问数:  1041
  • HTML全文浏览量:  164
  • PDF下载量:  263
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-01-18
  • 录用日期:  2019-07-10
  • 网络出版日期:  2021-10-13
  • 刊出日期:  2021-10-13

目录

    /

    返回文章
    返回