2.845

2023影响因子

(CJCR)

  • 中文核心
  • EI
  • 中国科技核心
  • Scopus
  • CSCD
  • 英国科学文摘

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

机器人操作技能模型综述

秦方博 徐德

秦方博, 徐德. 机器人操作技能模型综述. 自动化学报, 2019, 45(8): 1401-1418. doi: 10.16383/j.aas.c180836
引用本文: 秦方博, 徐德. 机器人操作技能模型综述. 自动化学报, 2019, 45(8): 1401-1418. doi: 10.16383/j.aas.c180836
QIN Fang-Bo, XU De. Review of Robot Manipulation Skill Models. ACTA AUTOMATICA SINICA, 2019, 45(8): 1401-1418. doi: 10.16383/j.aas.c180836
Citation: QIN Fang-Bo, XU De. Review of Robot Manipulation Skill Models. ACTA AUTOMATICA SINICA, 2019, 45(8): 1401-1418. doi: 10.16383/j.aas.c180836

机器人操作技能模型综述

doi: 10.16383/j.aas.c180836
基金项目: 

国家自然科学基金 61873266

国家自然科学基金 61733004

国家重点研究发展计划 2018YFD0400902

详细信息
    作者简介:

    秦方博   中国科学院自动化研究所博士研究生.2013年获得北京交通大学电子信息工程学院学士学位.主要研究方向为机器人视觉感知与控制, 精密装配.E-mail:qinfangbo2013@ia.ac.cn

    通讯作者:

    徐德   中国科学院自动化研究所研究员.于1985年和1990年获得山东工业大学学士和硕士学位, 2001年获得浙江大学博士学位.主要研究方向为机器人视觉测量, 视觉控制, 智能控制, 视觉定位, 显微视觉, 微装配.本文通信作者.E-mail:de.xu@ia.ac.cn

Review of Robot Manipulation Skill Models

Funds: 

National Natural Science Foundation of China 61873266

National Natural Science Foundation of China 61733004

National Key Research and Development Program of China 2018YFD0400902

More Information
    Author Bio:

      Ph. D. candidate at the Institute of Automation, Chinese Academy of Sciences. He received his bachelor degree from the School of Electronic and Information Engineering, Beijing Jiaotong University in 2013. His research interest covers robot vision based perception and control, and precision assembly

    Corresponding author: XU De   Professor at the Institute of Automation, Chinese Academy of Sciences. He received his bachelor and master degrees from Shandong University of Technology in 1985 and 1990, respectively, and received his Ph. D. degree from Zhejiang University in 2001. His research interest covers robotics and automation such as visual measurement, visual control, intelligent control, visual positioning, microscopic vision, and microassembly. Corresponding author of this paper
  • 摘要: 机器人技能学习是人工智能与机器人学的交叉领域,目的是使机器人通过与环境和用户的交互得到经验数据,基于示教学习或强化学习,从经验数据中自主获取和优化技能,并应用于以后的相关任务中.技能学习使机器人的任务部署更加灵活快捷和用户友好,而且可以让机器人具有自我优化的能力.技能模型是技能学习的基础和前提,决定了技能效果的上限.日益复杂和多样的机器人操作任务,对技能操作模型的设计实现带来了很多挑战.本文给出了技能操作模型的概念与性质,阐述了流程、运动、策略和效果预测四种技能表达模式,并对其典型应用和未来趋势做出了概括.
    1)  本文责任编委 贺威
  • 图  1  机器人操作技能模型框图

    Fig.  1  Diagram of robot manipulation skill model

    图  2  基于行为树的技能流程表示[14]

    Fig.  2  Behavior tree based skill procedure representation[14]

    图  3  基于概率运动基元的轨迹编码[31]

    Fig.  3  ProMP based trajectory encoding[31]

    图  4  基于多元变量动态系统的运动技能执行框架, 其中, $q$, $u$和分别表示机器人的关节角度、运动指令和动态系统的状态变量(此处为笛卡尔空间中的末端位置)[61]

    Fig.  4  Multivariate dynamical system based motion skill, $q$, $u$ and label the robot$'$s joint angle, motor command and dynamical system$'$s state variable (end-effector position in Cartesian space)[61]

    图  5  基于LSTM的装配策略模型[72]

    Fig.  5  LSTM based assembly policy model[72]

    图  6  基于深度神经网络的端到端策略模型[80]

    Fig.  6  DNN based end-to-end policy model[80]

    图  7  机器人操作模型的典型应用((a)轴孔装配技能[72]; (b)开门技能[8]; (c)手术切除技能[95])

    Fig.  7  Typical application of robot manipulation skill model ((a) peg-in-hole assembly[72]; (b) door opening[8]; (c) resection surgery[95])

  • [1] Hirzinger G, Landzettel K. Sensory feedback structures for robots with supervised learning. In: Proceedings of the 1985 IEEE International Conference on Robotics and Automation. St. Louis, MO, USA: IEEE, 1985. 627-635
    [2] Asada H, Asari Y. The direct teaching of tool manipulation skills via the impedance identification of human motions. In: Proceedings of the 1988 IEEE International Conference on Robotics and Automation. Philadelphia, PA, USA: IEEE, 1988. 1269-1274 http://www.panduoduo.net/r/17087799
    [3] 曾毅, 刘成林, 谭铁牛.类脑智能研究的回顾与展望.计算机学报, 2016, 39(1): 212-223 http://d.old.wanfangdata.com.cn/Periodical/jsjxb201601015

    Zeng Yi, Liu Cheng-Lin, Tan Tie-Niu. Retrospect and outlook of brain-inspired intelligence research. Chinese Journal of Computers, 2016, 39(1): 212-223 http://d.old.wanfangdata.com.cn/Periodical/jsjxb201601015
    [4] 陶建华, 陈云霁.类脑计算芯片与类脑智能机器人发展现状与思考.中国科学院院刊, 2016, 31(7): 803-811 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zgkxyyk201607009

    Tao Jian-Hua, Chen Yun-Ji. Current status and consideration on brain-like computing chip and brain-like intelligent robot. Bulletin of Chinese Academy of Sciences, 2016, 31(7): 803-811 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zgkxyyk201607009
    [5] Ersen M, Oztop E, Sariel S. Cognition-enabled robot manipulation in human environments: requirements, recent work, and open problems. IEEE Robotics and Automation Magazine, 2017, 24(3): 108-122 doi: 10.1109/MRA.2016.2616538
    [6] Argall B D, Chernova S, Veloso M, Browning B. A survey of robot learning from demonstration. Robotics and Autonomous Systems, 2009, 57(5): 469-483 doi: 10.1016/j.robot.2008.10.024
    [7] Kober J, Bagnell J A, Peters J. Reinforcement learning in robotics: a survey. The International Journal of Robotics Research, 2013, 32(11): 1238-1274 doi: 10.1177/0278364913495721
    [8] Yahya A, Li A, Kalakrishnan M, Chebotar Y, Levine S. Collective robot reinforcement learning with distributed asynchronous guided policy search. In: Proceedings of the 2017 IEEE/RSJ International Conference on Intelligent Robots and Systems. Vancouver, BC, Canada: IEEE, 2017. 79-86 https://arxiv.org/pdf/1610.00673.pdf
    [9] Foukarakis M, Leonidis A, Antona M, Stephanidis C. Combining finite state machine and decision-making tools for adaptable robot behavior. In: Proceedings of the 8th International Conference on Universal Access in Human-Computer Interaction. Heraklion, Crete, Greece: Springer, 2014. 625-635 http://hobbit.acin.tuwien.ac.at/publications/HCII2014.pdf
    [10] Zhou H T, Min H S, Lin Y H, Zhang S N. A robot architecture of hierarchical finite state machine for autonomous mobile manipulator. In: Proceedings of the 10th International Conference on Intelligent Robotics and Applications. Wuhan, China: Springer, 2017. 425-436 https://www.researchgate.net/publication/318924520_A_Robot_Architecture_of_Hierarchical_Finite_State_Machine_for_Autonomous_Mobile_Manipulator
    [11] Colledanchise M, Parasuraman R, Ögren P. Learning of behavior trees for autonomous agents. IEEE Transactions on Games, 2019, 11(2): 183-189 doi: 10.1109/TG.2018.2816806
    [12] Guerin K R, Lea C, Paxton C, Hager G D. A framework for end-user instruction of a robot assistant for manufacturing. In: Proceedings of the 2015 IEEE International Conference on Robotics and Automation. Seattle, WA, USA: IEEE, 2015. 6167-6174 https://jhu.pure.elsevier.com/en/publications/a-framework-for-end-user-instruction-of-a-robot-assistant-for-man-4
    [13] Paxton C, Hundt A, Jonathan F, Guerin K, Hager G D. CoSTAR: instructing collaborative robots with behavior trees and vision. In: Proceedings of the 2017 IEEE International Conference on Robotics and Automation. Singapore, Singapore: IEEE, 2017. 564-571 https://arxiv.org/pdf/1611.06145.pdf
    [14] Paxton C, Jonathan F, Hundt A, Mutlu B, Hager G D. Evaluating methods for end-user creation of robot task plans. In: Proceedings of the 2018 IEEE/RSJ International Conference on Intelligent Robots and Systems. Madrid, Spain: IEEE, 2018. 6086-6092 https://cpaxton.github.io/public/paxton2018evaluating.pdf
    [15] Bagnell J A, Cavalcanti F, Cui L, Galluzzo T, Hebert M, Kazemi M, et al. An integrated system for autonomous robotics manipulation. In: Proceedings of the 2012 IEEE/RSJ International Conference on Intelligent Robots and Systems. Vilamoura, Portugal: IEEE, 2012. 2955-2962 https://ieeexplore.ieee.org/abstract/document/6385888
    [16] Colledanchise M, Marzinotto A, Ögren P. Performance analysis of stochastic behavior trees. In: Proceedings of the 2014 IEEE International Conference on Robotics and Automation. Hong Kong, China: IEEE, 2014: 3265-3272 http://www.csc.kth.se/~miccol/Michele_Colledanchise/Publications_files/ICRA14_cmo_final.pdf
    [17] Akgun B, Thomaz A. Simultaneously learning actions and goals from demonstration. Autonomous Robots, 2016, 40(2): 211-227 doi: 10.1007/s10514-015-9448-x
    [18] Akgun B, Thomaz A L. Self-improvement of learned action models with learned goal models. In: Proceedings of the 2015 IEEE/RSJ International Conference on Intelligent Robots and Systems. Hamburg, Germany: IEEE, 2015. 5259-5264 https://ieeexplore.ieee.org/abstract/document/7354119
    [19] Kroemer O, Daniel C, Neumann G, van Hoof H, Peters J. Towards learning hierarchical skills for multi-phase manipulation tasks. In: Proceedings of the 2015 IEEE International Conference on Robotics and Automation. Seattle, WA, USA: IEEE, 2015. 1503-1510 https://ieeexplore.ieee.org/document/7139389
    [20] Medina J R, Billard A. Learning stable task sequences from demonstration with linear parameter varying systems and hidden Markov models. In: Proceedings of the 2017 Conference on Robot Learning. Mountain View, California, USA, 2017: 175-184 http://proceedings.mlr.press/v78/medina17a/medina17a.pdf
    [21] Pardowitz M, Knoop S, Dillmann R, Zollner R D. Incremental learning of tasks from user demonstrations, past experiences, and vocal comments. IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics), 2007, 37(2): 322-332 doi: 10.1109/TSMCB.2006.886951
    [22] Nicolescu M N, Mataric M J. Natural methods for robot task learning: instructive demonstrations, generalization and practice. In: Proceedings of the 2nd International Joint Conference on Autonomous Agents and Multiagent Systems. Melbourne, Australia: ACM, 2003. 241-248 https://www.cse.unr.edu/~monica/Research/Publications/agents03.pdf
    [23] Hayes B, Scassellati B. Autonomously constructing hierarchical task networks for planning and human-robot collaboration. In: Proceedings of the 2016 IEEE International Conference on Robotics and Automation. Stockholm, Sweden: IEEE, 2016. 5469-5476 https://scazlab.yale.edu/sites/default/files/files/hayes_icra16.pdf
    [24] Ahmadzadeh S R, Kormushev P, Caldwell D G. Interactive robot learning of visuospatial skills. In: Proceedings of the 2013 International Conference on Advanced Robotics. Montevideo, Uruguay: IEEE, 2013: 1-8 https://www.researchgate.net/publication/258832541_Interactive_Robot_Learning_of_Visuospatial_Skills
    [25] Ahmadzadeh S R, Paikan A, Mastrogiovanni F, Natale L, Kormushev P, Caldwell D G, et al. Learning symbolic representations of actions from human demonstrations. In: Proceedings of the 2015 IEEE International Conference on Robotics and Automation. Seattle, WA, USA: IEEE, 2015. 3801-3808 https://www.researchgate.net/publication/273755287_Learning_Symbolic_Representations_of_Actions_from_Human_Demonstrations
    [26] Dornhege C, Hertle A. Integrated symbolic planning in the tidyup-robot project. In: Proceedings of the 2013 Designing Intelligent Robots: Reintegrating AI: Papers Form the AAAI Spring Symposium. Palo Alto, California, USA: AAAI, 2013. https://www.researchgate.net/publication/289304978_Integrated_symbolic_planning_in_the_tidyup-robot_project
    [27] Beetz M, Mösenlechner L, Tenorth M. CRAM — a cognitive robot abstract machine for everyday manipulation in human environments. In: Proceedings of the 2010 IEEE/ RSJ International Conference on Intelligent Robots and Systems. Taipei, China: IEEE, 2010. 1012-1017
    [28] Tenorth M, Beetz M. KnowRob: a knowledge processing infrastructure for cognition-enabled robots. The International Journal of Robotics Research, 2013, 32(5): 566- 590 doi: 10.1177/0278364913481635
    [29] Bozcuoǧlu A K, Kazhoyan G, Furuta Y, Stelter S, Michael B, Kei O, et al. The exchange of knowledge using cloud robotics. IEEE Robotics and Automation Letters, 2018, 3(2): 1072-1079 doi: 10.1109/LRA.2018.2794626
    [30] Calinon S, Guenter F, Billard A. On learning, representing, and generalizing a task in a humanoid robot. IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics), 2007, 37(2): 286-298 doi: 10.1109/TSMCB.2006.886952
    [31] Maeda G J, Neumann G, Ewerton M, Lioutikov R, Kroemer O, Peters J. Probabilistic movement primitives for coordination of multiple human-robot collaborative tasks. Autonomous Robots, 2017, 41(3): 593-612 doi: 10.1007/s10514-016-9556-2
    [32] Calinon S, Li Z B, Alizadeh T, Tsagarakis N G, Caldwell D G. Statistical dynamical systems for skills acquisition in humanoids. In: Proceedings of the 12th IEEE-RAS International Conference on Humanoid Robots. Osaka, Japan: IEEE, 2012. 323-329 https://www.researchgate.net/publication/234154957_Statistical_dynamical_systems_for_skills_acquisition_in_humanoids
    [33] Huang Y L, Silvério J, Rozo L, Caldwell D G. Generalized task-parameterized skill learning. In: Proceedings of the 2018 IEEE International Conference on Robotics and Automation. Brisbane, QLD, Australia: IEEE, 2018. 5667- 5674 https://www.researchgate.net/publication/318255627_Generalized_Task-Parameterized_Skill_Learning
    [34] Tanwani A K, Calinon S. Learning robot manipulation tasks with task-parameterized semitied hidden semi-Markov model. IEEE Robotics and Automation Letters, 2016, 1(1): 235-242 doi: 10.1109/LRA.2016.2517825
    [35] Silvério J, Rozo L, Calinon S, Caldwell D G. Learning bimanual end-effector poses from demonstrations using task-parameterized dynamical systems. In: Proceedings of the 2015 IEEE/RSJ International Conference on Intelligent Robots and Systems. Hamburg, Germany: IEEE, 2015. 464-470 https://ieeexplore.ieee.org/document/7353413
    [36] Calinon S, Bruno D, Caldwell D G. A task-parameterized probabilistic model with minimal intervention control. In: Proceedings of the 2014 IEEE International Conference on Robotics and Automation. Hong Kong, China: IEEE, 2014. 3339-3344 https://www.researchgate.net/publication/261722329_A_task-parameterized_probabilistic_model_with_minimal_intervention_control
    [37] Rozo L, Bruno D, Calinon S, Caldwell D G. Learning optimal controllers in human-robot cooperative transportation tasks with position and force constraints. In: Proceedings of the 2015 IEEE/RSJ International Conference on Intelligent Robots and Systems. Hamburg, Germany: IEEE, 2015. 1024-1030 http://publications.idiap.ch/downloads/papers/2015/Rozo_IROS_2015.pdf
    [38] Paraschos A, Daniel C, Peters J, Neumann G. Probabilistic movement primitives. In: Proceedings of the 26th International Conference on Neural Information Processing Systems. Lake Tahoe, Nevada: ACM, 2013. 2616-2624 https://www.researchgate.net/publication/258620153_Probabilistic_Movement_Primitives
    [39] Paraschos A, Daniel C, Peters J, Neumann G. Using probabilistic movement primitives in robotics. Autonomous Robots, 2018, 42(3): 529-551 doi: 10.1007/s10514-017-9648-7
    [40] Paraschos A, Rueckert E, Peters J, Neumann G. Probabilistic movement primitives under unknown system dynamics. Advanced Robotics, 2018, 32(6): 297-310 doi: 10.1080/01691864.2018.1437674
    [41] Colomé A, Neumann G, Peters J, Torras C. Dimensionality reduction for probabilistic movement primitives. In: Proceedings of the 2014 IEEE-RAS International Conference on Humanoid Robots. Madrid, Spain: IEEE, 2014. 794-800 https://ieeexplore.ieee.org/document/7041454
    [42] Lioutikov R, Neumann G, Maeda G, Peters J. Learning movement primitive libraries through probabilistic segmentation. The International Journal of Robotics Research, 2017, 36(8): 879-894 doi: 10.1177/0278364917713116
    [43] Schneider M, Ertel W. Robot learning by demonstration with local Gaussian process regression. In: Proceedings of the 2010 IEEE/RSJ International Conference on Intelligent Robots and Systems. Taipei, China: IEEE, 2010: 255 -260 https://ieeexplore.ieee.org/document/5650949
    [44] Garrido J, Yu W, Soria A. Human behavior learning for robot in joint space. Neurocomputing, 2015, 155: 22-31 doi: 10.1016/j.neucom.2014.12.068
    [45] Schulman J, Ho J, Lee C, Abbeel P. Learning from demonstrations through the use of non-rigid registration. Robotics Research. Cham: Springer International Publishing, 2016. 339-354 https://people.eecs.berkeley.edu/~pabbeel/papers/SchulmanHoLeeAbbeel_ISRR2013.pdf
    [46] Lee A X, Lu H, Gupta A, Levine S, Abbeel P. Learning force-based manipulation of deformable objects from multiple demonstrations. In: Proceedings of the 2015 IEEE International Conference on Robotics and Automation. Seattle, WA, USA: IEEE, 2015. 177-184 https://people.eecs.berkeley.edu/~pabbeel/papers/2015-ICRA-TPS-LfD-forces.pdf
    [47] Ijspeert A J, Nakanishi J, Schaal S. Learning attractor landscapes for learning motor primitives. In: Proceedings of the 15th International Conference on Neural Information Processing Systems. Cambridge, MA, USA: MIT Press, 2002. 1547-1554 https://www.researchgate.net/publication/221617765_Learning_Attractor_Landscapes_for_Learning_Motor_Primitives
    [48] Ijspeert A J, Nakanishi J, Schaal S. Movement imitation with nonlinear dynamical systems in humanoid robots. In: Proceedings of the 2002 IEEE International Conference on Robotics and Automation. Washington, DC, USA: IEEE, 2002. 1398-1403 http://www4.cs.umanitoba.ca/~jacky/Robotics/Papers/movement-imitation-with-nonlinear.pdf
    [49] Ijspeert A J, Nakanishi J, Hoffmann H, Pastor P, Schaal S. Dynamical movement primitives: learning attractor models for motor behaviors. Neural Computation, 2013, 25(2): 328-373 doi: 10.1162/NECO_a_00393
    [50] Kober J, Peters J. Policy search for motor primitives in robotics. Machine Learning, 2011, 84(1-2): 171-203 doi: 10.1007/s10994-010-5223-6
    [51] Kober J, Peters J. Learning motor primitives for robotics. In: Proceedings of the 2009 IEEE International Conference on Robotics and Automation. Kobe, Japan: IEEE, 2009. 2112-2118 https://ieeexplore.ieee.org/document/5152577
    [52] Yang C G, Chen C Z, He W, Cui R X, Li Z J. Robot learning system based on adaptive neural control and dynamic movement primitives. IEEE Transactions on Neural Networks and Learning Systems, 2019, 30(3): 777-787 doi: 10.1109/TNNLS.2018.2852711
    [53] Kormushev P, Calinon S, Caldwell D G. Imitation learning of positional and force skills demonstrated via kinesthetic teaching and haptic input. Advanced Robotics, 2011, 25(5): 581-603 doi: 10.1163/016918611X558261
    [54] Kupcsik A, Deisenroth M P, Peters J, Loh A P, Vadakkepat P. Model-based contextual policy search for data-efficient generalization of robot skills. Artificial Intelligence, 2017, 247: 415-439 doi: 10.1016/j.artint.2014.11.005
    [55] Pastor P, Kalakrishnan M, Chitta S, Theodorou E, Schaal S. Skill learning and task outcome prediction for manipulation. In: Proceedings of the 2011 IEEE International Conference on Robotics and Automation. Shanghai, China: IEEE, 2011. 3828-3834 http://www.cs.cmu.edu/~cga/print.2/Pastor_ICRA_2011.pdf
    [56] Stulp F, Theodorou E A, Schaal S. Reinforcement learning with sequences of motion primitives for robust manipulation. IEEE Transactions on Robotics, 2012, 28(6): 1360- 1370 doi: 10.1109/TRO.2012.2210294
    [57] Mülling K, Kober J, Kroemer O, Peters J. Learning to select and generalize striking movements in robot table tennis. The International Journal of Robotics Research, 2013, 32(3): 263-279 doi: 10.1177/0278364912472380
    [58] Colomé A, Torras C. Dimensionality reduction for dynamic movement primitives and application to bimanual manipulation of clothes. IEEE Transactions on Robotics, 2018, 34(3): 602-615 doi: 10.1109/TRO.2018.2808924
    [59] Deniša M, Gams A, Ude A, Petrič T. Learning compliant movement primitives through demonstration and statistical generalization. IEEE/ASME Transactions on Mechatronics, 2016, 21(5): 2581-2594 doi: 10.1109/TMECH.2015.2510165
    [60] Gribovskaya E, Khansari-Zadeh S M, Billard A. Learning non-linear multivariate dynamics of motion in robotic manipulators. The International Journal of Robotics Research, 2011, 30(1): 80-117 doi: 10.1177/0278364910376251
    [61] Khansari-Zadeh S M, Billard A. Learning stable nonlinear dynamical systems with Gaussian mixture models. IEEE Transactions on Robotics, 2011, 27(5): 943-957 doi: 10.1109/TRO.2011.2159412
    [62] Shukla A, Billard A. Augmented-SVM for gradient observations with application to learning multiple-attractor dynamics. Support Vector Machines Applications. Cham: Springer International Publishing, 2014. 1-21 https://www.researchgate.net/publication/287723495_Augmented-SVM_for_Gradient_Observations_with_Application_to_Learning_Multiple-Attractor_Dynamics
    [63] Neumann K, Steil J J. Learning robot motions with stable dynamical systems under diffeomorphic transformations. Robotics and Autonomous Systems, 2015, 70: 1-15 doi: 10.1016/j.robot.2015.04.006
    [64] Duan J H, Ou Y S, Hu J B, Wang Z Y, Jin S K, Xu C. Fast and stable learning of dynamical systems based on extreme learning machine. IEEE Transactions on Systems, Man, and Cybernetics: Systems, 2019, 49(6): 1175-1185 doi: 10.1109/TSMC.2017.2705279
    [65] Shukla A, Billard A. Coupled dynamical system based arm-hand grasping model for learning fast adaptation strategies. Robotics and Autonomous Systems, 2012, 60(3): 424-440 doi: 10.1016/j.robot.2011.07.023
    [66] Ureche A L P, Umezawa K, Nakamura Y, Billard A. Task parameterization using continuous constraints extracted from human demonstrations. IEEE Transactions on Robotics, 2015, 31(6): 1458-1471 doi: 10.1109/TRO.2015.2495003
    [67] Gams A, Nemec B, Ijspeert A J, Ude A. Coupling movement primitives: interaction with the environment and bimanual tasks. IEEE Transactions on Robotics, 2014, 30(4): 816-830 doi: 10.1109/TRO.2014.2304775
    [68] Bruno D, Calinon S, Caldwell D G. Learning autonomous behaviours for the body of a flexible surgical robot. Autonomous Robots, 2017, 41(2): 333-347 doi: 10.1007/s10514-016-9544-6
    [69] Sung J, Selman B, Saxena A. Learning sequences of controllers for complex manipulation tasks. In: Proceedings of the 30th International Conference on Machine Learning. Atlanta, Georgia, USA: JMLR, 2013. https://www.researchgate.net/publication/241279096_Learning_Sequences_of_Controllers_for_Complex_Manipulation_Tasks
    [70] Chernova S, Veloso M. Confidence-based policy learning from demonstration using Gaussian mixture models. In: Proceedings of the 6th International Joint Conference on Autonomous Agents and Multiagent Systems. Honolulu, Hawaii: ACM, 2007. Article No. 233 https://wenku.baidu.com/view/818f5d134431b90d6c85c79d.html
    [71] Edmonds M, Gao F, Xie X, Liu H X, Qi S Y, Zhu Y X, et al. Feeling the force: integrating force and pose for fluent discovery through imitation learning to open medicine bottles. In: Proceedings of the 2017 IEEE/RSJ International Conference on Intelligent Robots and Systems. Vancouver, BC, Canada: IEEE, 2017. 3530-3537
    [72] Inoue T, De Magistris G, Munawar A, Yokoya T, Tachibana R. Deep reinforcement learning for high precision assembly tasks. In: Proceedings of the 2017 IEEE/ RSJ International Conference on Intelligent Robots and Systems. Vancouver, BC, Canada: IEEE, 2017. 819-825 https://arxiv.org/pdf/1708.04033.pdf
    [73] Deisenroth M P, Rasmussen C E, Fox D. Learning to control a low-cost manipulator using data-efficient reinforcement learning. In: Proceedings of the 2011 Robotics: Science and Systems Ⅶ. Los Angeles, CA, USA: University of Southern California, 2011. 57-64 https://rse-lab.cs.washington.edu/postscripts/robot-rl-rss-11.pdf
    [74] Deisenroth M P, Fox D, Rasmussen C E. Gaussian processes for data-efficient learning in robotics and control. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2015, 37(2): 408-423 doi: 10.1109/TPAMI.2013.218
    [75] Levine S, Wagener N, Abbeel P. Learning contact-rich manipulation skills with guided policy search. In: Proceedings of the 2015 IEEE International Conference on Robotics and Automation. Seattle, WA, USA: IEEE, 2015. 156-163 https://ieeexplore.ieee.org/document/7138994
    [76] Han W Q, Levine S, Abbeel P. Learning compound multi-step controllers under unknown dynamics. In: Proceedings of the 2015 IEEE/RSJ International Conference on Intelligent Robots and Systems. Hamburg, Germany: IEEE, 2015. 6435-6442 http://rll.berkeley.edu/reset_controller/reset_controller.pdf
    [77] Finn C, Tan X Y, Duan Y, Darrell T, Levine S, Abbeel P. Learning visual feature spaces for robotic manipulation with deep spatial autoencoders. arXiv: 1509.06113v1, 2015. https://arxiv.org/abs/1509.06113v1
    [78] Lee J, Ryoo M S. Learning robot activities from first-person human videos using convolutional future regression. In: Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition Workshops. Honolulu, HI, USA: IEEE, 2017. 472-473 https://arxiv.org/pdf/1703.01040.pdf
    [79] Gu S X, Holly E, Lillicrap T, Levine S. Deep reinforcement learning for robotic manipulation with asynchronous off-policy updates. In: Proceedings of the 2017 IEEE International Conference on Robotics and Automation. Singapore, Singapore: IEEE, 2017. 3389-3396 https://arxiv.org/pdf/1610.00633.pdf
    [80] Levine S, Finn C, Darrell T, Abbeel P. End-to-end training of deep visuomotor policies. The Journal of Machine Learning Research, 2016, 17(1): 1334-1373 https://arxiv.org/pdf/1504.00702v1.pdf
    [81] Sasaki K, Ogata T. End-to-end visuomotor learning of drawing sequences using recurrent neural networks. In: Proceedings of the 2018 International Joint Conference on Neural Networks. Rio de Janeiro, Brazil: IEEE, 2018. 1-2 https://waseda.pure.elsevier.com/en/publications/end-to-end-visuomotor-learning-of-drawing-sequences-using-recurre
    [82] Kase K, Suzuki K, Yang P C, Mori H, Ogata T. Put-in-box task generated from multiple discrete tasks by a humanoid robot using deep learning. In: Proceedings of the 2018 IEEE International Conference on Robotics and Automation. Brisbane, QLD, Australia: IEEE, 2018. 6447-6452 https://www.researchgate.net/publication/321283962_Put-In-Box_task_generated_from_multiple_discrete_tasks_by_humanoid_robot_using_deep_learning
    [83] Wolpert D M, Diedrichsen J, Flanagan J R. Principles of sensorimotor learning. Nature Reviews Neuroscience, 2011, 12(12): 739-751 doi: 10.1038/nrn3112
    [84] Ghadirzadeh A, Maki A, Kragic D, Björkman M. Deep predictive policy training using reinforcement learning. In: Proceedings of the 2017 IEEE/RSJ International Conference on Intelligent Robots and Systems. Vancouver, BC, Canada: IEEE, 2017. 2351-2358 https://arxiv.org/pdf/1703.00727.pdf
    [85] Schou C, Andersen R S, Chrysostomou D, Bogh S, Madsen O. Skill-based instruction of collaborative robots in industrial settings. Robotics and Computer-Integrated Manufacturing, 2018, 53: 72-80 doi: 10.1016/j.rcim.2018.03.008
    [86] Bekiroglu Y, Laaksonen J, Jorgensen J A, Kyrki V. Assessing grasp stability based on learning and haptic data. IEEE Transactions on Robotics, 2011, 27(3): 616-629 doi: 10.1109/TRO.2011.2132870
    [87] Dang H, Allen P K. Learning grasp stability. In: Proceedings of the 2012 IEEE International Conference on Robotics and Automation. Saint Paul, MN, USA: IEEE, 2012. 2392-2397 https://www.researchgate.net/publication/260289014_Learning_grasp_stability
    [88] Levine S, Pastor P, Krizhevsky A, Ibarz J, Quillen D. Learning hand-eye coordination for robotic grasping with deep learning and large-scale data collection. The International Journal of Robotics Research, 2018, 37(4-5): 421- 436 doi: 10.1177/0278364917710318
    [89] Finn C, Goodfellow I, Levine S. Unsupervised learning for physical interaction through video prediction. In: Proceedings of the 30th Neural Information Processing Systems. Barcelona, Spain: MIT Press, 2016: 64-72 https://arxiv.org/pdf/1605.07157.pdf
    [90] Finn C, Levine S. Deep visual foresight for planning robot motion. In: Proceedings of the 2017 IEEE International Conference on Robotics and Automation. Singapore, Singapore: IEEE, 2017. 2786-2793 https://arxiv.org/abs/1610.00696
    [91] Petrič T, Gams A, Colasanto L, Ijspeert A J, Ude A. Accelerated sensorimotor learning of compliant movement primitives. IEEE Transactions on Robotics, 2018, 34(6): 1636- 1642 doi: 10.1109/TRO.2018.2861921
    [92] Huang P C, Hsieh Y H, Mok A K. A skill-based programming system for robotic furniture assembly. In: Proceedings of the 16th IEEE International Conference on Industrial Informatics. Porto, Portugal: IEEE, 2018. 355-361
    [93] Qin F, Xu D, Zhang D, Li Y. Robotic skill learning for precision assembly with microscopic vision and force feedback. IEEE/ASME Transactions on Mechatronics, 24(3): 1117-1128 https://ieeexplore.ieee.org/document/8681089
    [94] 倪自强, 王田苗, 刘达.基于视觉引导的工业机器人示教编程系统.北京航空航天大学学报, 2016, 42(3): 562-568 http://d.old.wanfangdata.com.cn/Periodical/bjhkhtdxxb201603018

    Ni Zi-Qiang, Wang Tian-Miao, Liu Da. Vision guide based teaching programming for industrial robot. Journal of Beijing University of Aeronautics and Astronautics, 2016, 42(3): 562-568 http://d.old.wanfangdata.com.cn/Periodical/bjhkhtdxxb201603018
    [95] Hu D Y, Gong Y Z, Hannaford B, Seibel E J. Semi-autonomous simulated brain tumor ablation with RavenⅡ surgical robot using behavior tree. In: Proceedings of the 2015 IEEE International Conference on Robotics and Automation. Seattle, WA, USA: IEEE, 2015. 3868-3875 https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4578323/
    [96] Ewerton M, Neumann G, Lioutikov R, Amor H B, Peters J, Maeda G, et al. Learning multiple collaborative tasks with a mixture of interaction primitives. In: Proceedings of the 2015 IEEE International Conference on Robotics and Automation. Seattle, WA, USA: IEEE, 2015. 1535-1542 Learning multiple collaborative tasks with a mixture of interaction primitives
    [97] Silvério J, Calinon S, Rozo L, Caldwell D G. Bimanual skill learning with pose and joint space constraints. In: Proceedings of the 2018 IEEE/RAS International Conference on Humanoid Robots. Beijing, China: IEEE, 2018. 153-159 http://publications.idiap.ch/downloads/papers/2018/Silverio_HUMANOIDS_2018.pdf
    [98] Figueroa N, Ureche A L P, Billard A. Learning complex sequential tasks from demonstration: a pizza dough rolling case study. In: Proceedings of the 11th ACM/IEEE International Conference on Human-Robot Interaction. Christchurch, New Zealand: IEEE, 2016. 611-612 http://lasa.epfl.ch/publications/uploadedFiles/p611-figueroa.pdf
    [99] Calinon S, Sardellitti I, Caldwell D G. Learning-based control strategy for safe human-robot interaction exploiting task and robot redundancies. In: Proceedings of the 2010 IEEE/RSJ International Conference on Intelligent Robots and Systems. Taipei, China: IEEE, 2010. 249-254 http://vigir.missouri.edu/~gdesouza/Research/Conference_CDs/IEEE_IROS_2010/data/papers/1177.pdf
    [100] Ureche A L P, Billard A. Analyzing human behavior and bootstrapping task constraints from kinesthetic demonstrations. In: Proceedings of the 10th Annual ACM/IEEE International Conference on Human-Robot Interaction Extended Abstracts. Portland, Oregon, USA: ACM, 2015: 199-200 http://lasa.epfl.ch/publications/uploadedFiles/p199-ureche.pdf
    [101] Muhlig M, Gienger M, Hellbach S, Steil J J, Goerick C. Task-level imitation learning using variance-based movement optimization. In: Proceedings of the 2009 IEEE International Conference on Robotics and Automation. Kobe, Japan: IEEE, 2009. 1177-1184 https://www.researchgate.net/publication/224557223_Task-level_imitation_learning_using_variance-based_movement_optimization
    [102] Gupta A, Eppner C, Levine S, Abbeel P. Learning dexterous manipulation for a soft robotic hand from human demonstrations. In: Proceedings of the 2016 IEEE/RSJ International Conference on Intelligent Robots and Systems. Daejeon, South Korea: IEEE, 2016. 3786-3793 https://arxiv.org/pdf/1603.06348.pdf
    [103] Peters J, Schaal S. Reinforcement learning of motor skills with policy gradients. Neural Networks, 2008, 21(4): 682- 697 doi: 10.1016/j.neunet.2008.02.003
    [104] Xu W J, Chen J, Lau H Y K, Ren H L. Automate surgical tasks for a flexible serpentine manipulator via learning actuation space trajectory from demonstration. In: Proceedings of the 2016 IEEE International Conference on Robotics and Automation. Stockholm, Sweden: IEEE, 2016. 4406-4413 https://ieeexplore.ieee.org/document/7487640
    [105] Murali A, Sen S, Kehoe B, Garg A, McFarland S, Patil S, et al. Learning by observation for surgical subtasks: multilateral cutting of 3D viscoelastic and 2D orthotropic tissue phantoms. In: Proceedings of the 2015 IEEE International Conference on Robotics and Automation. Seattle, WA, USA: IEEE, 2015. 1202-1209 https://people.eecs.berkeley.edu/~pabbeel/papers/2015-ICRA-LBO-DVRK.pdf
    [106] Ureche L P, Billard A. Constraints extraction from asymmetrical bimanual tasks and their use in coordinated behavior. Robotics and Autonomous Systems, 2018, 103: 222-235 doi: 10.1016/j.robot.2017.12.011
    [107] Salehian S S M, Khoramshahi M, Billard A. A dynamical system approach for softly catching a flying object: theory and experiment. IEEE Transactions on Robotics, 2016, 32(2): 462-471 doi: 10.1109/TRO.2016.2536749
    [108] Kalashnikov D, Irpan A, Pastor P, Ibarz J, Herzog A, Jang E, et al. Scalable deep reinforcement learning for vision-based robotic manipulation. In: Proceedings of the 2nd Conference on Robot Learning. Zurich, Switzerland: PMLR, 2018. 651-673
    [109] Deng J, Dong W, Socher R, Li L J, Li K, Li F F. Imagenet: a large-scale hierarchical image database. In: Proceedings of the 2009 IEEE Conference on Computer Vision and Pattern Recognition. Miami, FL, USA: IEEE, 2009. 248-255 http://image-net.org/papers/imagenet_cvpr09.pdf
    [110] Du Z H, He L, Chen Y N, Xiao Y, Gao P, Wang T Z. Robot cloud: bridging the power of robotics and cloud computing. Future Generation Computer Systems, 2015, 21(4): 301-312 https://www.sciencedirect.com/science/article/pii/S0167739X16000042
    [111] Kehoe B, Patil S, Abbeel P, Goldberg K. A survey of research on cloud robotics and automation. IEEE Transactions on Automation Science and Engineering, 2015, 12(2): 398-409 doi: 10.1109/TASE.2014.2376492
    [112] Hu G Q, Tay W P, Wen Y G. Cloud robotics: architecture, challenges and applications. IEEE Network, 2012, 26(3): 21-28 doi: 10.1109/MNET.2012.6201212
    [113] Hunziker D, Gajamohan M, Waibel M, D$'$Andrea R. Rapyuta: the RoboEarth cloud engine. In: Proceedings of the 2013 IEEE International Conference on Robotics and Automation. Karlsruhe, Germany: IEEE, 2013. 438-444
    [114] Saxena A, Jain A, Sener O, Jami A, Misra D K, Koppula H S. Robobrain: large-scale knowledge engine for robots. arXiv: 1412.0691, 2014. https://arxiv.org/pdf/1412.0691.pdf
    [115] 王飞跃.知识机器人与工业5.0. 2015年国家机器人发展论坛.北京: 中国自动化学会, 2015.

    Wang Fei-Yue. Knowledge Robot and Industry 5.0. In: Proceedings of the 2015 China National Robotics Development Forum. Beijing, China: Chinese Association of Automation, 2015.
    [116] 白天翔, 王帅, 沈震, 曹东璞, 郑南宁, 王飞跃.平行机器人与平行无人系统:框架、结构、过程、平台及其应用.自动化学报, 2017, 43(2): 161-175 http://www.aas.net.cn/CN/abstract/abstract18998.shtml

    Bai Tian-Xiang, Wang Shuai, Shen Zhen, Cao Dong-Pu, Zheng Nan-Ning, Wang Fei-Yue. Parallel robotics and parallel unmanned systems: framework, structure, process, platform and applications. Acta Automatica Sinica, 2017, 43(2): 161-175 http://www.aas.net.cn/CN/abstract/abstract18998.shtml
    [117] 王飞跃.软件定义的系统与知识自动化:从牛顿到默顿的平行升华.自动化学报, 2015, 41(1): 1-8 doi: 10.3969/j.issn.1003-8930.2015.01.001

    Wang Fei-Yue. Software-defined systems and knowledge automation: a parallel paradigm shift from Newton to Merton. Acta Automatica Sinica, 2015, 41(1): 1-8 doi: 10.3969/j.issn.1003-8930.2015.01.001
  • 加载中
图(7)
计量
  • 文章访问数:  2943
  • HTML全文浏览量:  1224
  • PDF下载量:  491
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-12-17
  • 录用日期:  2019-03-19
  • 刊出日期:  2019-08-20

目录

    /

    返回文章
    返回