2.845

2023影响因子

(CJCR)

  • 中文核心
  • EI
  • 中国科技核心
  • Scopus
  • CSCD
  • 英国科学文摘

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于FTC的BBMC调速控制策略及参数优化

刘继 张小平 张瑞瑞

刘继, 张小平, 张瑞瑞. 基于FTC的BBMC调速控制策略及参数优化. 自动化学报, 2020, 46(2): 332-341. doi: 10.16383/j.aas.c180767
引用本文: 刘继, 张小平, 张瑞瑞. 基于FTC的BBMC调速控制策略及参数优化. 自动化学报, 2020, 46(2): 332-341. doi: 10.16383/j.aas.c180767
Liu Ji, Zhang Xiao-Ping, Zhang Rui-Rui. BBMC Speed Control Strategy and Parameter Optimization Based on FTC. ACTA AUTOMATICA SINICA, 2020, 46(2): 332-341. doi: 10.16383/j.aas.c180767
Citation: Liu Ji, Zhang Xiao-Ping, Zhang Rui-Rui. BBMC Speed Control Strategy and Parameter Optimization Based on FTC. ACTA AUTOMATICA SINICA, 2020, 46(2): 332-341. doi: 10.16383/j.aas.c180767

基于FTC的BBMC调速控制策略及参数优化

doi: 10.16383/j.aas.c180767
基金项目: 

国家自然科学基金 51477047

详细信息
    作者简介:

    刘继  湖南科技大学信息与电气工程学院硕士研究生.主要研究方向为电力电子系统及控制. E-mail: dlk101lj@163.com

    张瑞瑞  湖南科技大学信息与电气工程学院硕士研究生.主要研究方向为电力电子与电力传动. E-mail: zrr0001@126.com

    通讯作者:

    张小平  湖南科技大学教授.主要研究方向为电力电子与电力传动, 智能控制.本文通信作者. E-mail: zxp836@163.com

BBMC Speed Control Strategy and Parameter Optimization Based on FTC

Funds: 

National Natural Science Foundation of China 51477047

More Information
    Author Bio:

    LIU JI  Master student at the School of Information and Electrical Engineering, Hunan University of Science and Technology. His research interest covers power electronic systems and control

    ZHANG Rui-Rui  Master student at the School of Information and Electrical Engineering, Hunan University of Science and Technology. His research interest covers power electronics and power transmission

    Corresponding author: ZHANG Xiao-Ping  Professor at Hunan University of Science and Technology. His research interest covers power electronics and power transmission, intelligent control. Corresponding author of this paper
  • 摘要: 针对以Buck-boost矩阵变换器(BBMC)为功率变换器的异步电机调速系统, 提出一种基于有限时间控制(FTC)的变频调速控制方法.首先根据异步电机的给定转速, 经基于PI-IP控制的矢量控制算法获得BBMC的参考输出电压; 再以BBMC中电容电压与电感电流作为系统控制变量, 经有限时间控制算法得到BBMC中对应功率开关的占空比; 再根据该占空比对BBMC中对应功率开关实施控制, 即可在BBMC输出端获得与其参考输出一致的输出电压, 从而实现异步电机实际转速对其给定转速的准确跟踪, 达到对异步电机转速进行准确控制的目的; 同时采用自适应狼群优化算法对BBMC主电路参数及基于有限时间的控制参数进行优化, 取得了满意的效果.最后通过仿真和实验对上述控制方法进行了验证.
    Recommended by Associate Editor MEI Sheng-Wei
    1)  本文责任编委 梅生伟
  • 图  1  BBMC主电路拓扑结构

    Fig.  1  BBMC main circuit topology

    图  2  基于PI-IP控制的转速控制外环原理框图

    Fig.  2  Speed control loop based on PI–IP control principle diagram

    图  3  自适应狼群优化算法流程图

    Fig.  3  Flow chart of adaptive wdf swarm optimization algorithm

    图  4  电机稳态运行的转速波形

    Fig.  4  Rotational speed waveform of motor in steady operation

    图  5  给定转速突变时电机运行状态波形

    Fig.  5  Motor running state waveform when a given speed is abrupt

    图  6  负载突变时电机运行状态波形

    Fig.  6  Motor running state waveform when load is abrupt

    图  7  实验装置原理框图

    Fig.  7  Experimental device principle block diagram

    图  8  实验装置实物图

    Fig.  8  Physical diagram of experimental device

    图  9  三种给定转速对应的电机稳态转速波形

    Fig.  9  Steady speed waveform of motor corresponding to three kinds of given rotational speed

    图  10  给定转速突变时对应的实验波形

    Fig.  10  Experimental waveforms corresponding to sudden changes in a given rotational speed

    图  11  负载发生突变时对应的实验波形

    Fig.  11  Experimental waveforms corresponding to sudden changes in load

    表  1  电机稳态运行的仿真结果

    Table  1  Motor steady-state operation simulation results

    给定转速(r/min) 实际转速(r/min) 相对误差(%)
    300 299.7 0.10
    500 499.6 0.08
    800 799.1 0.11
    下载: 导出CSV

    表  2  电机稳态运行实验结果

    Table  2  Motor steady state operation test results

    给定转速(r/min) 实际转速(r/min) 相对误差(%)
    300 297.8 0.70
    500 496.8 0.64
    800 794.1 0.74
    下载: 导出CSV
  • [1] 张小平, 朱建林, 唐华平, 等.一种新型Buck-Boost矩阵变换器.信息与控制, 2008, 37(1): 40-45 doi: 10.3969/j.issn.1002-0411.2008.01.006

    Zhang Xiao-Ping, Zhu Jian-Lin, Tang Hua-Ping, et al. A novel Buck-Boost matrix converter. Information and Control, 2008, 37(1): 40-45 doi: 10.3969/j.issn.1002-0411.2008.01.006
    [2] 皇甫宜耿, 吴宇, 马瑞卿.一种鲁棒无抖颤滑模控制的Buck-boost变换器.西北工业大学学报, 2014, 32(2): 285-289 doi: 10.3969/j.issn.1000-2758.2014.02.024

    Huangfu Yi-Geng, Wu Yu, Ma Rui-Qing. A buck-boost converter with robust sliding mode control. Journal of Northwestern Polytechnical University, 2014, 32(2): 285-289 doi: 10.3969/j.issn.1000-2758.2014.02.024
    [3] Xu Q. Adaptive discrete-time sliding mode impedance control of a piezoelectric microgripper. IEEE Transactions on Robotics, 2013, 29(3): 663-673 doi: 10.1109/TRO.2013.2239554
    [4] 龚臣, 谢运祥, 邓衍平, 等.基于Buck-boost逆变器的离散滑模控制仿真研究.通信电源技术, 2005, 22(2): 9-13 doi: 10.3969/j.issn.1009-3664.2005.02.003

    Gong Chen, Xie Yun-Xiang, Deng Yan-Ping, et al. Simulation of discrete sliding mode control based on buck-boost inverter. Telecom Power Technology, 2005, 22(2): 9-13 doi: 10.3969/j.issn.1009-3664.2005.02.003
    [5] 张小平, 朱建林, 唐华平, 等.基于离散滑模控制的新型Buck-Boost矩阵变换器.高技术通讯, 2008, 18(2): 179-183 http://d.old.wanfangdata.com.cn/Periodical/gjstx98200802014

    Zhang Xiao-Ping, Zhu Jian-Lin, Tang Hua-Ping, et al. A novel Buck-Boost matrix converter based on discrete sliding mode Control. Chinese High Technology Letters, 2008, 18(2): 179-183 http://d.old.wanfangdata.com.cn/Periodical/gjstx98200802014
    [6] 岳舟.离散滑模控制的Buck-Boost光伏逆变器研究.太阳能学报, 2013, 34(2): 233-238 doi: 10.3969/j.issn.0254-0096.2013.02.010

    Zhou Yue. Research on Buck-Boost photovoltaic inverter with discrete sliding mode control. Acta Energiae Solaris Sinica, 2013, 34(2): 233-238 doi: 10.3969/j.issn.0254-0096.2013.02.010
    [7] 张小平, 朱建林, 唐华平, 等.新型Buck-Boost矩阵变换器的双闭环控制策略.控制理论与应用, 2009, 26(2): 203-208 http://d.old.wanfangdata.com.cn/Periodical/kzllyyy200902018

    Zhang Xiao-Ping, Zhu Jian-Lin, Tang Hua-Ping, et al. Double closed-loop control strategy for a new Buck-Boost matrix converter. Control Theory & Applications, 2009, 26(2): 203-208 http://d.old.wanfangdata.com.cn/Periodical/kzllyyy200902018
    [8] 江法洋, 郑丽君, 宋建成, 等. LCL型并网逆变器重复双闭环控制方法.中国电机工程学报, 2017, 37(10): 2944-2954 http://www.cnki.com.cn/Article/CJFDTotal-ZGDC201710023.htm

    Jiang Fa-Yang, Zheng Li-Jun, Song Jian-Cheng, et al. Repeated double closed loop control method for LCL grid-connected inverter. Proceedings of the CSEE, 2017, 37(10): 2944-2954 http://www.cnki.com.cn/Article/CJFDTotal-ZGDC201710023.htm
    [9] 梁鼎, 张小平.新型Buck-Boost矩阵变换器的自抗扰控制策略.仪表技术与传感器, 2013, (4): 77-80 doi: 10.3969/j.issn.1002-1841.2013.04.025

    Liang Ding, Zhang Xiao-Ping. Active disturbance rejection control strategy for a novel Buck-Boost matrix converter. nstrument Technology and Sensors, 2013, (4): 77-80 doi: 10.3969/j.issn.1002-1841.2013.04.025
    [10] 张小平, 唐水平, 周兰, 等. Buck-boost矩阵变换器的复合控制策略.电子测量与仪器学报, 2016, 30(6): 931-936 http://d.old.wanfangdata.com.cn/Periodical/dzclyyqxb201606014

    Zhang Xiao-Ping, Tang Fang, Zhou Lan, et al. Composite control strategy for buck-boost matrix converters. Journal of Electronic Measurement and Instrument, 2016, 30(6): 931-936 http://d.old.wanfangdata.com.cn/Periodical/dzclyyqxb201606014
    [11] 杨晨, 程盈盈, 都海波, 等. Buck型变换器自适应有限时间降压控制算法研究.自动化学报, 2016, 42(2): 315-320 doi: 10.16383/j.aas.2016.c150446

    Yang Chen, Cheng Ying-Ying, Du Hai-Bo, et al. An adaptive finite-time control algorithm for buck converter systems. Acta Automatica Sinica, 2016, 42(2): 315-320 doi: 10.16383/j.aas.2016.c150446
    [12] 张春燕, 戚国庆, 李银伢, 等.一种基于有限时间稳定的环绕控制器设计.自动化学报, 2018, 44(11): 138-149 doi: 10.16383/j.aas.2017.c160798

    Zhang Chun-Yan, Qi Guo-Qing, Li Yin-Ya, et al. Standoff tracking control with respect to moving target via finite-time stabilization. Acta Automatica Sinica, 2018, 44(11): 138-149 doi: 10.16383/j.aas.2017.c160798
    [13] 文传博, 邓露, 吴兰.基于滑模观测器和广义观测器的故障估计方法.自动化学报, 2018, 44(9): 164-171 doi: 10.16383/j.aas.2017.c160730

    Wen Chuan-Bo, Deng Lu, Wu Lan. Fault estimation approaches with sliding mode observer and descriptor observer. Acta Automatica Sinica, 2018, 44(9): 164-171 doi: 10.16383/j.aas.2017.c160730
    [14] Haimo V T. Finite time controllers. SIAM Journal on Control & Optimization, 1986, 24(4): 760-770 http://d.old.wanfangdata.com.cn/Periodical/kzllyyy200911007
    [15] 孙振兴, 李世华, 张兴华.基于扩张状态观测器和有限时间控制的感应电机直接转矩控制.控制理论与应用, 2014(6): 748-756 http://d.old.wanfangdata.com.cn/Periodical/kzllyyy201406010

    Sun Zhen-Xing, Li Shi-Hua, Zhang Xing-Hua. Direct torque control of induction motor eased on extended state observer and finite time control. Control Theory & Applications, 2014(6): 748-756 http://d.old.wanfangdata.com.cn/Periodical/kzllyyy201406010
    [16] Wang J, Li S, Yang J, et al. Finite-time disturbance observer based non-singular terminal sliding-mode control for pulse width modulation based DC-DC buck converters with mismatched load disturbances. IET Power Electronics, 2016, 9(9): 1995-2002 doi: 10.1049/iet-pel.2015.0178
    [17] Rabiaa O, Mouna B H, Mehdi D, et al. Scalar speed control of dual three phase induction motor using PI and IP controllers. In: Proceedings of the 2017 International Conference on Green Energy Conversion Systems, Hammamet, Tunisia, 2017: 1-6
    [18] Yang M, Tang S, Xu D. Comments on antiwindup strategy for pi-type speed controller. IEEE Transactions on Industrial Electronics, 2015, 62(2): 1329-1332 doi: 10.1109/TIE.2014.2363626
  • 加载中
图(11) / 表(2)
计量
  • 文章访问数:  1745
  • HTML全文浏览量:  388
  • PDF下载量:  108
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-11-16
  • 录用日期:  2019-03-25
  • 刊出日期:  2020-03-06

目录

    /

    返回文章
    返回