2.845

2023影响因子

(CJCR)

  • 中文核心
  • EI
  • 中国科技核心
  • Scopus
  • CSCD
  • 英国科学文摘

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

一种基于词义向量模型的词语语义相似度算法

李小涛 游树娟 陈维

李小涛, 游树娟, 陈维. 一种基于词义向量模型的词语语义相似度算法. 自动化学报, 2020, 46(8): 1654−1669 doi: 10.16383/j.aas.c180312
引用本文: 李小涛, 游树娟, 陈维. 一种基于词义向量模型的词语语义相似度算法. 自动化学报, 2020, 46(8): 1654−1669 doi: 10.16383/j.aas.c180312
Li Xiao-Tao, You Shu-Juan, Chen Wai. An algorithm of semantic similarity between words based on word single-meaning embedding model. Acta Automatica Sinica, 2020, 46(8): 1654−1669 doi: 10.16383/j.aas.c180312
Citation: Li Xiao-Tao, You Shu-Juan, Chen Wai. An algorithm of semantic similarity between words based on word single-meaning embedding model. Acta Automatica Sinica, 2020, 46(8): 1654−1669 doi: 10.16383/j.aas.c180312

一种基于词义向量模型的词语语义相似度算法

doi: 10.16383/j.aas.c180312
详细信息
    作者简介:

    游树娟  中国移动研究院助理工程师. 2016年获得中国海洋大学硕士学位.主要研究方向为知识图谱, 语义相似度计算. E-mail: youshujuan@chinamobile.com

    陈维  中国移动研究院首席科学家, 主持物联网领域的创新研发工作.主要研究方向为机器智能和边缘计算. E-mail: wai.w.chen@gmail.com

    通讯作者:

    李小涛  中国移动研究院工程师. 2016年获得北京航空航天大学博士学位.主要研究方向为物联网语义, 知识图谱.本文通信作者. E-mail: lixiaotao@chinamobile.com

An Algorithm of Semantic Similarity Between Words Based on Word Single-meaning Embedding Model

More Information
    Author Bio:

    YOU Shu-Juan Assistant engineer at the China Mobile Research Institute. She received her master degree from Ocean University of China in 2016. Her research interest covers knowledge graph and semantic similarity computation

    CHEN Wai Chief scientist at the China Mobile Research Institute, where he directs R & D of Internet of Things (IoT). His research interest covers machine intelligence and edge computing

    Corresponding author: LI Xiao-Tao Engineer at China Mobile Research Institute. He received his Ph. D. degree from Beihang University in 2016. His research interest covers IoT semantics and knowledge graph. Corresponding author of this paper
  • 摘要: 针对基于词向量的词语语义相似度计算方法在多义词、非邻域词和同义词三类情况计算准确性差的问题, 提出了一种基于词义向量模型的词语语义相似度算法.与现有词向量模型不同, 在词义向量模型中多义词按不同词义被分成多个单义词, 每个向量分别与词语的一个词义唯一对应.我们首先借助同义词词林中先验的词义分类信息, 对语料库中不同上下文的多义词进行词义消歧; 然后基于词义消歧后的文本训练词义向量模型, 实现了现有词向量模型无法完成的精确词义表达; 最后对两个比较词进行词义分解和同义词扩展, 并基于词义向量模型和同义词词林综合计算词语之间的语义相似度.实验结果表明本文算法能够显著提升以上三类情况的语义相似度计算精度.
  • 图  1  词义向量模型的构建流程

    Fig.  1  The build process of word single-meaning embeddings

    图  2  训练词义向量的神经网络结构

    Fig.  2  The architecture of neural network to learn word single-meaning embeddings

    图  3  基于词义向量的词语语义相似度计算过程

    Fig.  3  The computing process of similarity between words based on word single-meaning embedding model

    图  4  词义消歧精度和语义相似度精度与上下文窗口的关系

    Fig.  4  The precisions of WSD and semantic similarity at different context window sizes

    表  1  同义词词林的编码格式

    Table  1  The coding format of the Tongyici Cilin

    位数 1 2 3 4 5 6 7 8
    符号 D a 1 5 B 0 2 = \ # \@
    性质 大类 中类 小类 词群 原子词群
    层级 第1层 第2层 第3层 第4层 第5层
    下载: 导出CSV

    表  2  CBOW词向量模型中与"仪表"最相似的10个词

    Table  2  Top 10 most similar words to the polyseme in the CBOW word embedding model

    仪表 相似度
    压力表 0.671
    控制系统 0.666
    电子设备 0.655
    控制技术 0.650
    电子式 0.647
    液压 0.641
    主动式 0.639
    飞控 0.638
    机械式 0.637
    仪表板 0.635
    下载: 导出CSV

    表  3  词义向量模型中与"仪表"两个词义最相似的10个词

    Table  3  Top 10 most similar words to the different meanings of the polyseme in WSME

    Dc04A01 =仪表 相似度 Bo18A01 =仪表 相似度
    风流倜傥 0.700 控制系统 0.697
    De04B02 =才情 0.679 电子设备 0.684
    Ee31A01 =儒雅 0.669 电子系统 0.674
    貌美 0.667 Bo18A16#压力表 0.662
    De04A04 =才思 0.663 转速表 0.653
    Ee31A01 =雍容 0.662 Bo25B01 =方向盘 0.652
    Ee10B01 =旷达 0.659 Bo18A17#高度计 0.652
    Eb30B01 =其貌不扬 0.659 Fa05B03 =液压 0.650
    Dk02B02#才学 0.653 Dc01C16#机械式 0.644
    De04A02 =天资 0.647 仪表板 0.643
    下载: 导出CSV

    表  4  词义消歧精度对比

    Table  4  Evaluation results of WSD

    比较算法 $P_{mir} $ (%) $P_{mar} $ (%)
    基于HowNet义原向量的方法[23] 36.35 40.19
    本文算法 42.74 44.08
    下载: 导出CSV

    表  5  WSME与Emb + TC方法的对比

    Table  5  The comparison result of WSME and Emb + TC

    比较算法 wordsim-240 wordsim-297
    CBOW 51.47 62.72
    Emb + TC ($k = 0.3$) 30.87 45.69
    Emb + TC ($k = 0.5$) 33.04 47.57
    Emb + TC ($k = 0.7$) 39.18 53.34
    WSME 61.45 64.09
    下载: 导出CSV

    表  6  与词向量模型的Spearman系数对比

    Table  6  The Spearman correlation result of models

    比较算法 wordsim-240 wordsim-297
    CBOW 54.07 62.72
    Skip-gram 57.94 61.82
    FastText [16-17] 59.05 63.97
    SSA [18] 61.69 56.86
    SAT [18] 58.42 61.80
    WSME + CBOW 61.45 64.09
    WSME + Skip-gram 63.54 62.64
    下载: 导出CSV

    表  7  wordsim-401数据集上的Spearman系数对比

    Table  7  The Spearman correlation evaluated on wordsim-401

    比较算法 polysemous-wordsim-401
    Guo等[20] 55.4
    WSME 56.9
    下载: 导出CSV

    表  8  多义词语义相似度计算结果

    Table  8  The semantic-similarity result of polysemous words

    词1 词2 人的评分 CBOW FastText WSME
    自然 0.661 0.104 0.168 0.443
    图书馆 0.772 0.253 0.409 0.425
    金融 0.775 0.080 0.022 0.362
    下载: 导出CSV

    表  9  非邻域词语义相似度计算结果

    Table  9  The semantic-similarity result of nonadjacent words

    词1 词2 人的评分 CBOW FastText WSME
    旅行 宾馆 0.800 0.003 0.096 0.226
    医生 责任 0.882 0.057 0.142 0.160
    医院 基础设施 0.528 0.036 0.053 0.129
    下载: 导出CSV

    表  10  同义词相似度计算结果

    词1 词2 CBOW FastText WSME
    西红柿 番茄 0.473 0.697 1.000
    西红柿 黄瓜 0.508 0.682 0.568
    番茄 黄瓜 0.436 0.530 0.568
    下载: 导出CSV
  • [1] 李文清, 孙新, 张常有, 冯烨.一种本体概念的语义相似度计算方法.自动化学报, 2012, 38(2): 229-235 doi: 10.3724/SP.J.1004.2012.00229

    Li Wen-Qing, Sun Xin, Zhang Chang-You, Feng Ye. A semantic similarity measure between ontological concepts. Acta Automatica Sinica, 2012, 38(2): 229-235 doi: 10.3724/SP.J.1004.2012.00229
    [2] Mikolov T, Chen K, Corrado G, Dean J. Efficient estimation of word representations in vector space[Online], available: https://arxiv.org/abs/1301.3781, September 7, 2013
    [3] Mikolov T, Sutskever I, Chen K, Corrado G, Dean J. Distributed representations of words and phrases and their compositionality. In: Proceedings of the 26th International Conference on Neural Information Processing Systems. Lake Tahoe, Nevada, USA: Curran Associates Inc., 2013. 3111-3119
    [4] Banu A, Fatima S S, Khan K U R. A new ontology-based semantic similarity measure for concept's subsumed by multiple super concepts. International Journal of Web Applications, 2014, 6(1): 14-22 http://www.zentralblatt-math.org/ioport/en/?q=an%3A11259130
    [5] Meng L L, Gu J Z, Zhou Z L. A new model of information content based on concept's topology for measuring semantic similarity in WordNet. International Journal of Grid and Distributed Computing, 2012, 5(3): 81-94 http://www.researchgate.net/publication/313393650_A_new_model_of_information_content_based_on_concept's_topology_for_measuring_semantic_similarity_in_WordNet
    [6] Seddiqui M H, Aono M. Metric of intrinsic information content for measuring semantic similarity in an ontology. In: Proceedings of the 7th Asia-Pacific Conference on Conceptual Modelling. Brisbane, Australia: Australian Computer Society, Inc., 2010. 89-96
    [7] Sánchez D, Batet M, Isern D. Ontology-based information content computation. Knowledge-Based Systems, 2011, 24(2): 297-303 doi: 10.1016/j.knosys.2010.10.001
    [8] Sánchez D, Batet M, Isern D, Valls A. Ontology-based semantic similarity: A new feature-based approach. Expert Systems with Applications, 2012, 39(8): 7718-7728 http://cn.bing.com/academic/profile?id=472c6e95b9ca6007ac7cbc7cbcd3436c&encoded=0&v=paper_preview&mkt=zh-cn
    [9] Zadeh P D H, Reformat M Z. Feature-based similarity assessment in ontology using fuzzy set theory. In: Proceedings of the 2012 IEEE International Conference on Fuzzy Systems. Brisbane, Australia: IEEE, 2012. 1-7
    [10] Li M, Lang B, Wang J M. Compound concept semantic similarity calculation based on ontology and concept constitution features. In: Proceedings of the 27th International Conference on Tools with Artificial Intelligence (ICTAI). Vietri sul Mare, Italy: IEEE, 2015. 226-233
    [11] Gao J B, Zhang B W, Chen X H. A WordNet-based semantic similarity measurement combining edge-counting and information content theory. Engineering Applications of Artificial Intelligence, 2015, 39: 80-88 doi: 10.1016/j.engappai.2014.11.009
    [12] 田久乐, 赵蔚.基于同义词词林的词语相似度计算方法.吉林大学学报(信息科学版), 2010, 28(6): 602-608 doi: 10.3969/j.issn.1671-5896.2010.06.011

    Tian Jiu-Le, Zhao Wei. Words similarity algorithm based on Tongyici Cilin in semantic web adaptive learning system. Journal of Jilin University (Information Science Edition), 2010, 28(6): 602-608 doi: 10.3969/j.issn.1671-5896.2010.06.011
    [13] Pennington J, Socher R, Mannin C D. GloVe: Global vectors for word representation. In: Proceedings of the 2014 Conference on Empirical Methods in Natural Language Processing (EMNLP). Doha, Qatar: Association for Computational Linguistics, 2014. 1532-1542
    [14] Socher R, Bauer J, Manning C D, Ng A Y. Parsing with compositional vector grammars. In: Proceedings of the 51st Annual Meeting of the Association for Computational Linguistics. Sofia, Bulgaria: Association for Computational Linguistics, 2013. 455-465
    [15] Chen X X, Xu L, Liu Z Y, Sun M S, Luan H B. Joint learning of character and word embeddings. In: Proceedings of the 24th International Conference on Artificial Intelligence. Buenos Aires, Argentina: AIAA, 2015. 1236-1242
    [16] Bojanowski P, Grave E, Joulin A, Mikolov T. Enriching word vectors with subword information[Online], available: https://arxiv.org/abs/1607.04606, June 19, 2017
    [17] Joulin A, Grave E, Bojanowski P, Mikolov T. Bag of tricks for efficient text classification[Online], available: https://arxiv.org/abs/1607.01759, August 9, 2016
    [18] Niu Y L, Xie R B, Liu Z Y, Sun M S. Improved word representation learning with sememes. In: Proceeding of the 55th Annual Meeting of the Association for Computational Linguistics. Vancouver, Canada: Association for Computational Linguistics, 2017. 2049-2058
    [19] Huang E H, Socher R, Manning C D, Ng A Y. Improving word representations via global context and multiple word prototypes. In: Proceeding of the 50th Annual Meeting of the Association for Computational Linguistics. Jeju Island, Korea: Association for Computational Linguistics, 2012. 873-882
    [20] Guo J, Che W X, Wang H F, Liu T. Learning sense-specific word embeddings by exploiting bilingual resources. In: Proceedings of the 25th International Conference on Computational Linguistics: Technical Papers. Dublin, Ireland: COLING, 2014. 497-507
    [21] 鹿文鹏, 黄河燕, 吴昊.基于领域知识的图模型词义消歧方法.自动化学报, 2014, 40(12): 2836-2850 doi: 10.3724/SP.J.1004.2014.02836

    Lu Wen-Peng, Huang He-Yan, Wu Hao. Word sense disambiguation with graph model based on domain knowledge. Acta Automatica Sinica, 2014, 40(12): 2836-2850 doi: 10.3724/SP.J.1004.2014.02836
    [22] Chen X X, Liu Z Y, Sun M S. A unified model for word sense representation and disambiguation. In: Proceedings of the 2014 Conference on Empirical Methods in Natural Language Processing (EMNLP). Doha, Qatar: Association for Computational Linguistics, 2014. 1025-1035
    [23] 唐共波, 于东, 荀恩东.基于知网义原词向量表示的无监督词义消歧方法.中文信息学报, 2015, 29(6): 23-29 doi: 10.3969/j.issn.1003-0077.2015.06.004

    Tang Gong-Bo, Yu Dong, Xun En-Dong. An unsupervised word sense disambiguation method based on sememe vector in HowNet. Journal of Chinese Information Processing, 2015, 29(6): 23-29 doi: 10.3969/j.issn.1003-0077.2015.06.004
  • 加载中
图(4) / 表(10)
计量
  • 文章访问数:  1474
  • HTML全文浏览量:  376
  • PDF下载量:  224
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-05-16
  • 录用日期:  2018-08-23
  • 刊出日期:  2020-08-26

目录

    /

    返回文章
    返回