2.845

2023影响因子

(CJCR)

  • 中文核心
  • EI
  • 中国科技核心
  • Scopus
  • CSCD
  • 英国科学文摘

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

延迟深度回声状态网络及其在时间序列预测中的应用

薄迎春 张欣 刘宝

薄迎春, 张欣, 刘宝. 延迟深度回声状态网络及其在时间序列预测中的应用, 2020, 46(8): 1644−1653 doi: 10.16383/j.aas.c180264
引用本文: 薄迎春, 张欣, 刘宝. 延迟深度回声状态网络及其在时间序列预测中的应用, 2020, 46(8): 1644−1653 doi: 10.16383/j.aas.c180264
Bo Ying-Chun, Zhang Xin, Liu Bao. Delayed deep echo state network and its application on time series prediction. Acta Automatica Sinica, 2020, 46(8): 1644−1653 doi: 10.16383/j.aas.c180264
Citation: Bo Ying-Chun, Zhang Xin, Liu Bao. Delayed deep echo state network and its application on time series prediction. Acta Automatica Sinica, 2020, 46(8): 1644−1653 doi: 10.16383/j.aas.c180264

延迟深度回声状态网络及其在时间序列预测中的应用

doi: 10.16383/j.aas.c180264
基金项目: 

国家自然科学基金 21606256

中央高校基本科研业务费专项资金 20CX05006A

详细信息
    作者简介:

    张欣  中国石油大学(华东)讲师. 2013年获得东北大学工学博士学位.主要研究方向为自适应动态规划理论及智能控制. E-mail: zhangxin@upc.edu.cn

    刘宝  中国石油大学(华东)教授. 2006年获得东华大学工学博士学位.主要研究方向为智能优化控制. E-mail: liubao@upc.edu.cn

    通讯作者:

    薄迎春  中国石油大学(华东)讲师. 2013年获得北京工业大学工学博士学位.主要研究方向为神经网络及智能控制.本文通信作者. E-mail: boyingchun@sina.com.cn

Delayed Deep Echo State Network and Its Application on Time Series Prediction

Funds: 

National Natural Science Foundation of China 21606256

the Fundamental Research Funds for the Central Universities 20CX05006A

More Information
    Author Bio:

    ZHANG Xin  Lecturer at China University of Petroleum (East China). She received her Ph. D. degree from Northeastern University in 2013. Her research interest covers adaptive dynamical programming theory and intelligent control

    LIU Bao  Professor at China University of Petroleum (East China). He received his Ph. D. degree from Donghua University in 2006. His main research interest is intelligent optimization control

    Corresponding author: BO Ying-Chun  Lecturer at China University of Petroleum (East China). He received his Ph. D. degree from Beijing University of Technology in 2013. His research interest covers artiflcial neural networks and intelligent control. Corresponding author of this paper
  • 摘要: 为提高回声状态网络对于时间序列预测问题的处理能力, 本文提出了一种延迟深度回声状态网络构造方法.该方法将多个子神经元池顺序连接, 每两个相邻的子神经元池之间嵌入了一个滞后环节.由于滞后环节的存在,该网络可将长时记忆任务转化为一系列短时记忆任务, 从而简化长时依赖问题的求解, 同时降低神经元池的构建难度.实验表明, 该网络具有强大的短时记忆容量, 对初始参数有较好的鲁棒性, 对时间序列预测问题的处理能力也比常规回声状态网络有显著提高.
    Recommended by Associate Editor LIU Qing-Shan
    1)  本文责任编委  刘青山
  • 图  1  回声状态网络结构

    Fig.  1  Schematic diagram of ESN

    图  2  延迟深度回声状态网络结构

    Fig.  2  Schematic diagram of DDESN

    图  3  DDESN的遗忘曲线及$MC$随滞后时间变化

    Fig.  3  Forgetting curves and curves of $MC$ with $D$ in DDESN

    图  4  DDESN的记忆时间变化

    Fig.  4  Change of memory duration of DDESN

    图  5  NRMSE随$D$的变化

    Fig.  5  Change in NRMSE with $D$

    图  6  滞后时间优化过程及预测效果

    Fig.  6  Optimization process of delay time and result of prediction

    图  7  DDESN对不同时间序列问题的预测效果

    Fig.  7  Prediction results of DDESN for different problems

    图  8  $\rho$($\theta$)随$\theta$变化曲线

    Fig.  8  Changes in $\rho$($\theta$) with $\theta$

    图  9  神经元池输出信号相关度比较

    Fig.  9  Correlation comparison between reservoir signals

    表  1  ESN及DDESN参数设置

    Table  1  Parameters settings for ESN and DDESN

    Model $n$ $N^i$ $D^i$ $\rho^i$ $MC_{\max}$
    ESN 1 100 0 0.95 31.08
    DDESN$_2$ 2 50 0 $\sim$ 100 0.95 54.02
    DDESN$_5$ 5 20 0 $\sim$ 50 0.95 62.07
    下载: 导出CSV

    表  2  参数设置

    Table  2  Parameter settings

    Task $n_{\max}$ $n_\mathrm{opt}$ $D_{\max}$ $N^i$ $D_\mathrm{opt}$
    NARMA 20 2 100 30 [27]
    MSO$_2$ 20 6 100 10 [8, 9, 8, 9, 8]
    MSO$_5$ 20 6 100 20 [9, 9, 10, 9, 10]
    MSO$_8$ 20 6 100 25 [12, 13, 11, 12, 12]
    MSO$_{12}$ 20 5 100 40 [16, 17, 15, 16]
    Mackey-Glass 20 15 100 25 各层滞后时间均为6
    下载: 导出CSV

    表  3  Mackey-Glass预测性能

    Table  3  Prediction performance for Mackey-Glass

    Task ESN D & S ESN DDESN
    $\mathrm{NRMSE}_{84}$ 0.140 0.031 5$.81\times10^{-3}$
    NRMSE120 0.220 0.049 0.010
    下载: 导出CSV

    表  4  不同ESN模型的性能比较(MSO任务)

    Table  4  Performance comparison of different ESN models (MSO tasks)

    Task DDESN Balanced ESN[19] Evolutionary[27] D & S ESN[22] Evolino[28]
    MSO$_2$ $3.95\times10^{-8}$ $2.51\times10^{-12}$ $3.92\times10^{-8}$ $3.02\times10^{-9}$ $4.15\times10^{-3}$
    MSO$_5$ $6.84\times10^{-7}$ $1.06\times10^{-6}$ $2.54\times10^{-2}$ $8.21\times10^{-5}$ $0.166$
    MSO$_8$ $6.89\times10^{-6}$ $2.73\times10^{-4}$ $4.96\times10^{-3}$ $-$ $-$
    MSO$_{12}$ $1.50\times10^{-4}$ $-$ $-$ $-$ $-$
    下载: 导出CSV

    表  5  DDESN的鲁棒性测试结果

    Table  5  Robustness testing results of DDESN

    Task NARMA MSO$_{2}$ MSO$_{5}$ MSO$_{8}$ MSO$_{12}$ M-G$_{30}$
    最大NRMSE 0.2369 $7.03\times 10^{-5}$ $4.44\times 10^{-3}$ $6.33\times 10^{-2}$ $3.10\times 10^{-3}$ 0.0874
    最小NRMSE 0.1968 $3.95\times 10^{-8}$ $6.84\times 10^{-7}$ $5.17\times 10^{-6}$ $1.50\times 10^{-4}$ 0.0058
    平均NRMSE 0.2151 $1.06\times 10^{-6}$ $1.42\times 10^{-4}$ $7.17\times 10^{-4}$ $6.44\times 10^{-4}$ 0.0224
    NRMSE标准差 0.0089 $7.03\times 10^{-6}$ $7.17\times 10^{-4}$ $6.31\times 10^{-3}$ $4.41\times 10^{-4}$ 0.0130
    下载: 导出CSV
  • [1] Qiao J F, Wang L, Yang C L, Gu K. Adaptive Levenberg-Marquardt algorithm based echo state network for chaotic time series prediction. IEEE Access, 2018, 6: 10720-10732 doi: 10.1109/ACCESS.2018.2810190
    [2] Jaeger H, Haas H. Harnessing nonlinearity: Predicting chaotic systems and saving energy in wireless communication. Science, 2004, 304(5667): 78-80 doi: 10.1126/science.1091277
    [3] Xu M L, Han M. Adaptive elastic echo state network for multivariate time series prediction. IEEE Transactions on Cybernetics, 2016, 46(10): 2173-2183 doi: 10.1109/TCYB.2015.2467167
    [4] Han M, Xu M L. Laplacian echo state network for multivariate time series prediction. IEEE Transactions on Neural Networks - Learning Systems, 2018, 29(1): 238-244 http://cn.bing.com/academic/profile?id=cb55b15e28bcf33693db131d308e5bf4&encoded=0&v=paper_preview&mkt=zh-cn
    [5] Scardapane S, Wang D H, Panella M. A decentralized training algorithm for echo state networks in distributed big data applications. Neural Networks, 2016, 78: 65-74 doi: 10.1016/j.neunet.2015.07.006
    [6] Bo Y C, Zhang X. Online adaptive dynamic programming based on echo state networks for dissolved oxygen control. Applied Soft Computing, 2018, 62: 830-839 doi: 10.1016/j.asoc.2017.09.015
    [7] Wootton A J, Taylor S L, Day C R, Haycock P W. Optimizing echo state networks for static pattern recognition. Cognitive Computation, 2017, 9(3): 391-399 doi: 10.1007/s12559-017-9468-2
    [8] Trentin E, Scherer S, Schwenker F. Emotion recognition from speech signals via a probabilistic echo-state network. Pattern Recognition Letters, 2015, 66: 4-12 doi: 10.1016/j.patrec.2014.10.015
    [9] 许美玲, 韩敏.多元混沌时间序列的因子回声状态网络预测模型.自动化学报, 2015, 41(5): 1042-1046 doi: 10.16383/j.aas.2015.c140604

    Xu Mei-Ling, Han Min. Factor echo state network for multivariate chaotic time series prediction. Acta Automatica Sinica, 2015, 41(5): 1042-1046 doi: 10.16383/j.aas.2015.c140604
    [10] Jaeger H. Reservoir riddles: Suggestions for echo state network research. In: Proceedings of the 2005 IEEE International Joint Conference on Neural Networks. Montreal, Quebec, Canada: IEEE, 2005. 1460-1462
    [11] Ozturk M C, Xu D M, Príncipe J C. Analysis and design of echo state networks. Neural Computation, 2007, 19(1): 111-138 doi: 10.1162/neco.2007.19.1.111
    [12] Xue Y B, Yang L, Haykin S. Decoupled echo state networks with lateral inhibition. Neural Networks, 2007, 20(3): 365-376 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=e384cb32526eba071c56d92ae0bf4a70
    [13] Qiao J F, Li F J, Han H G, Li W J. Growing echo-state network with multiple subreservoirs. IEEE Transactions on Neural Networks and Learning Systems, 2017, 28(2): 391-404 doi: 10.1109/TNNLS.2016.2514275
    [14] 韩红桂, 乔俊飞, 薄迎春.基于信息强度的RBF神经网络结构设计研究.自动化学报, 2012, 38(7): 1083-1090 doi: 10.3724/SP.J.1004.2012.01083

    Han Hong-Gui, Qiao Jun-Fei, Bo Ying-Chun. On structure design for RBF neural network based on information strength. Acta Automatica Sinica, 2012, 38(7): 1083-1090 doi: 10.3724/SP.J.1004.2012.01083
    [15] Huang G B, Saratchandran P, Sundararajan N. A generalized growing and pruning RBF (GGAP-RBF) neural network for function approximation. IEEE Transactions on Neural Networks, 2005, 16(1): 57-67 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=0794f8a0aaa8d3898a169ecb821642ee
    [16] Dutoit X, Schrauwen B, Van Campenhout J, Stroobandt D, Van Brussel H, Nuttin M. Pruning and regularization in reservoir computing. Neurocomputing, 2009, 72(7-9): 1534-1546 doi: 10.1016/j.neucom.2008.12.020
    [17] Rodan A, Tino P. Minimum complexity echo state network. IEEE Transactions on Neural Networks, 2011, 22(1): 131-144 doi: 10.1109/TNN.2010.2089641
    [18] Koryakin D, Lohmann J, Butz M V. Balanced echo state networks. Neural Networks, 2012, 36: 35-45 doi: 10.1016/j.neunet.2012.08.008
    [19] Jaeger H. Short Term Memory in Echo State Networks, GMD-Report 152, Fraunhofer Institute for Autonomous Intelligent Systems, Germany, 2002.
    [20] Schrauwen B, Wardermann M, Verstraeten D, Steil J J, Stroobandt D. Improving reservoirs using intrinsic plasticity. Neurocomputing, 2008, 71(7-9): 1159-1171 doi: 10.1016/j.neucom.2007.12.020
    [21] Holzmann G, Hauser H. Echo state networks with filter neurons and a delay-sum readout. Neural Networks, 2010, 23(2): 244-256 http://cn.bing.com/academic/profile?id=7da0cd4e35aa87559b40e1e9c1111afe&encoded=0&v=paper_preview&mkt=zh-cn
    [22] 张慧, 王坤峰, 王飞跃.深度学习在目标视觉检测中的应用进展与展望.自动化学报, 2017, 43(8): 1289-1305 doi: 10.16383/j.aas.2017.c160822

    Zhang Hui, Wang Kun-Feng, Wang Fei-Yue. Advances and perspectives on applications of deep learning in visual object detection. Acta Automatica Sinica, 2017, 43(8): 1289-1305 doi: 10.16383/j.aas.2017.c160822
    [23] Gallicchio C, Micheli A, Pedrelli L. Deep reservoir computing: A critical experimental analysis. Neurocomputing, 2017, 268: 87-99 doi: 10.1016/j.neucom.2016.12.089
    [24] Prokhorov D. Echo state networks: Appeal and challenges. In: Proceeding of the 2005 IEEE International Joint Conference on Neural Networks. Montreal, Quebec, Canada: IEEE, 2005. 1463-1466
    [25] Azaria M, Hertz D. Time delay estimation by generalized cross correlation methods. IEEE Transactions on Acoustics, Speech, & Signal Processing, 1984, 32(2): 280-285 http://cn.bing.com/academic/profile?id=65b15152398b79989ee725cfb289d91c&encoded=0&v=paper_preview&mkt=zh-cn
    [26] Knapp C, Carter G. The generalized correlation method for estimation of time delay. IEEE Transactions on Acoustics, Speech, & Signal Processing, 1976, 24(4): 320-327 http://cn.bing.com/academic/profile?id=333b2c6d3506162357c6d8a138425866&encoded=0&v=paper_preview&mkt=zh-cn
    [27] Roeschies B, Igel C. Structure optimization of reservoir networks. Logic Journal of the IGPL, 2010, 18(5): 635-669 doi: 10.1093/jigpal/jzp043
    [28] Schmidhuber J, Wierstra D, Gagliolo M, Gomez F. Training recurrent networks by evolino. Neural Computation, 2007, 19(3): 757-779 doi: 10.1162/neco.2007.19.3.757
  • 加载中
图(9) / 表(5)
计量
  • 文章访问数:  1503
  • HTML全文浏览量:  203
  • PDF下载量:  199
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-04-28
  • 录用日期:  2018-08-02
  • 刊出日期:  2020-08-26

目录

    /

    返回文章
    返回