2.845

2023影响因子

(CJCR)

  • 中文核心
  • EI
  • 中国科技核心
  • Scopus
  • CSCD
  • 英国科学文摘

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于卷积非负矩阵部分联合分解的强噪声单声道语音分离

董兴磊 胡英 黄浩 吾守尔·斯拉木

董兴磊, 胡英, 黄浩, 吾守尔·斯拉木. 基于卷积非负矩阵部分联合分解的强噪声单声道语音分离. 自动化学报, 2020, 46(6): 1200-1209. doi: 10.16383/j.aas.c180065
引用本文: 董兴磊, 胡英, 黄浩, 吾守尔·斯拉木. 基于卷积非负矩阵部分联合分解的强噪声单声道语音分离. 自动化学报, 2020, 46(6): 1200-1209. doi: 10.16383/j.aas.c180065
DONG Xing-Lei, HU Ying, HUANG Hao, SILAMU Wushour. Monaural Speech Separation by Means of Convolutive Nonnegative Matrix Partial Co-factorization in Low SNR Condition. ACTA AUTOMATICA SINICA, 2020, 46(6): 1200-1209. doi: 10.16383/j.aas.c180065
Citation: DONG Xing-Lei, HU Ying, HUANG Hao, SILAMU Wushour. Monaural Speech Separation by Means of Convolutive Nonnegative Matrix Partial Co-factorization in Low SNR Condition. ACTA AUTOMATICA SINICA, 2020, 46(6): 1200-1209. doi: 10.16383/j.aas.c180065

基于卷积非负矩阵部分联合分解的强噪声单声道语音分离

doi: 10.16383/j.aas.c180065
基金项目: 

国家自然科学基金 61761041

国家自然科学基金 61663044

国家自然科学基金青年基金 61603323

新疆维吾尔自治区自然科学基金 2016D01C061

新疆大学自然科学基金 BS160239

新疆自治区高校科研计划项目 XJ EDU2017T002

详细信息
    作者简介:

    董兴磊  新疆大学信息科学与工程学院硕士研究生.主要研究方向为语音信号处理, 语音分离. E-mail: 15739578112@163.com

    黄浩  新疆大学信息科学与工程学院教授. 2008年在上海交通大学电子工程系获博士学位.主要研究方向语音识别, 多媒体人机交互技术. E-mail: huanghao@xju.edu.cn

    吾守尔·斯拉木  新疆大学信息科学与工程学院教授.主要研究方向为语音识别, 语音合成, 多语种信息处理. E-mail: wushour@xju.edu.cn

    通讯作者:

    胡英  新疆大学信息科学与工程学院副教授.研究方向为音频信息检索, 语音处理.本文通信作者. E-mail: huying 75@sina.com

Monaural Speech Separation by Means of Convolutive Nonnegative Matrix Partial Co-factorization in Low SNR Condition

Funds: 

National Natural Science Foundation of China 61761041

National Natural Science Foundation of China 61663044

National Natural Science Foundation of Youth Foundation of China 61603323

Natural Science Grant of Xinjiang Uygur Autonomous Region 2016D01C061

Natural Science Grant of Xinjiang University BS160239

University Scientiflc Research Project of Xinjiang Uygur Autonomous Region XJ EDU2017T002

More Information
    Author Bio:

    DONG Xing-Lei  Master student in the Department of Information Science and Engineering, Xinjiang University. His research interest covers speech signal processing and speech separation

    HUANG Hao  Professor in the Department of Information Science and Engineering, Xinjiang University. He received his Ph. D. degree from Shanghai Jiao Tong University in 2008. His research interest covers speech recognition and multi-media human-machine interaction

    SILAMU Wushour  Professor in the Department of Information Science and Engineering, Xinjiang University. His research interest covers speech recognition, speech synthesis, and multi-lingual information processing

    Corresponding author: HU Ying   Associate professor in the Department of Information Science and Engineering, Xinjiang University. Her research interest covers audio information retrieval and speech processing. Corresponding author of this paper
  • 摘要: 非负矩阵部分联合分解(Nonnegative matrix partial co-factorization, NMPCF)将指定源频谱作为边信息参与混合信号频谱的联合分解, 以帮助确定指定源的基向量进而提高信号分离性能.卷积非负矩阵分解(Convolutive nonnegative matrix factorization, CNMF)采用卷积基分解的方法进行矩阵分解, 在单声道语音分离方面取得较好的效果.为了实现强噪声条件下的语音分离, 本文结合以上两种算法的优势, 提出一种基于卷积非负矩阵部分联合分解(Convolutive nonnegative partial matrix co-factorization, CNMPCF)的单声道语音分离算法.本算法首先通过基音检测算法得到混合信号的语音起始点, 再据此确定混合信号中的纯噪声段, 最后将混合信号频谱和噪声频谱进行卷积非负矩阵部分联合分解, 得到语音基矩阵, 进而得到分离的语音频谱和时域信号.实验中, 混合语音信噪比(Signal noise ratio, SNR)选择以-3 dB为间隔从0 dB至-12 dB共5种SNR.实验结果表明, 在不同噪声类型和噪声强度条件下, 本文提出的CNMPCF方法相比于以上两种方法均有不同程度的提高.
    Recommended by Associate Editor DANG Jian-Wu
    1)  本文责任编委 党建武
  • 图  1  干净语音频谱经过CNMF分解后提取出的基向量

    Fig.  1  The basis extracted from the clean speech spectrum after CNMF decomposition

    图  2  CNMPCF算法的频谱分解示意图

    Fig.  2  The illustration of magnitude spectrogram by CNMPCF

    图  3  语音起点、终点(边界)检测示意图

    Fig.  3  The illustration of start end points (boundary) detection of a speech

    图  4  -12 dB混合信号的语音上界、下界检测偏差概率分布

    Fig.  4  The probability distribution of detection deviation of upper and lower bounds in -12 dB mixture speech

    图  5  不同噪声下的PESQ性能对比

    Fig.  5  Comparison of PESQ under difierent noises

    图  6  不同噪声下的SDR性能对比

    Fig.  6  Comparison of SDR under difierent noises

    图  7  不同噪声下的$\Delta $SNR性能对比

    Fig.  7  Comparison of $\Delta $SNR under different noises

    表  1  5种信噪比下, 不同方法的主观听音得分平均值

    Table  1  The subjective listening score of different methods at five different input SNR levels

    SNR (dB)NMPCFSCNMFCNMPCF
    -121.061.081.20
    -91.371.461.62
    -61.761.952.08
    -32.202.292.42
    02.742.593.05
    下载: 导出CSV
  • [1] Huang P S, Kim M, Hasegawa-Johnson M, Smaragdis P. Deep learning for monaural speech separation. In: Proceedings of the 2014 IEEE International Conference on Acoustics, Speech, and Signal Processing. Florence: IEEE, 2014. 1562-1566
    [2] Huang P S, Kim M, Hasegawa-Johnson M, Smaragdis P. Joint optimization of masks and deep recurrent neural networks for monaural source separation. IEEE/ACM Transactions on Audio, Speech, and Language Processing, 2015, 23(12): 2136-2147 doi: 10.1109/TASLP.2015.2468583
    [3] 刘文举, 聂帅, 梁山, 张学良.基于深度学习语音分离技术的研究现状与进展.自动化学报, 2016, 42(6): 819-833 doi: 10.16383/j.aas.2016.c150734

    Liu Wen-Ju, Nie Shuai, Liang Shan, Zhang Xue-Liang. Deep learning based speech separation technology and its developments. Acta Automatica Sinica, 2016, 42(6): 819-833 doi: 10.16383/j.aas.2016.c150734
    [4] Lee D D, Seung H S. Learning the parts of objects by non-negative matrix factorization. Nature, 1999, 401(6755): 788 -791 doi: 10.1038/44565
    [5] Wang D L, Brown G J. Computational Auditory Scene Analysis: Principles, Algorithms, and Applications. Piscataway: IEEE Press, 2006.
    [6] 韩伟, 张雄伟, 闵刚, 张启业.基于感知掩蔽深度神经网络的单通道语音增强方法.自动化学报, 2017, 43(2): 248-258 doi: 10.16383/j.aas.2017.c150719

    Han Wei, Zhang Xiong-Wei, Min Gang, Zhang Qi-Ye. A single-channel speech enhancement approach based on perceptual masking deep neural network. Acta Automatica Sinica, 2017, 43(2): 248-258 doi: 10.16383/j.aas.2017.c150719
    [7] 袁文浩, 孙文珠, 夏斌, 欧世峰.利用深度卷积神经网络提高未知噪声下的语音增强性能.自动化学报, 2018, 44(4): 751-759 doi: 10.16383/j.aas.2018.c170001

    Yuan Wen-Hao, Sun Wen-Zhu, Xia Bin, Ou Shi-Feng. Improving speech enhancement in unseen noise using deep convolutional neural network. Acta Automatica Sinica, 2018, 44(4): 751-759 doi: 10.16383/j.aas.2018.c170001
    [8] Smaragdis P. Convolutive speech bases and their application to supervised speech separation. IEEE Transactions on Audio, Speech, and Language Processing, 2007, 15(1): 1-12 doi: 10.1109/TASL.2006.876726
    [9] O'Grady P D, Pearlmutter B A. Discovering speech phones using convolutive non-negative matrix factorisation with a sparseness constraint. Neurocomputing, 2008, 72(1-3): 88 -101 doi: 10.1016/j.neucom.2008.01.033
    [10] Sun M, Li Y N, Gemmeke J F, Zhang X W. Speech enhancement under low SNR conditions via noise estimation using sparse and low-rank NMF with Kullback--Leibler divergence. IEEE Transactions on Audio, Speech, and Language Processing, 2015, 23(7): 1233-1242 doi: 10.1109/TASLP.2015.2427520
    [11] Kim M, Yoo J, Kang K, Choi S. Blind rhythmic source separation: Nonnegativity and repeatability. In: Proceedings of the 2010 IEEE International Conference on Acoustics, Speech, and Signal Processing. Dallas: IEEE, 2010. 2006-2009
    [12] Yoo J, Kim M, Kang K, Choi S. Nonnegative matrix partial co-factorization for drum source separation. In: Proceedings of the 2010 IEEE International Conference on Acoustics, Speech, and Signal Processing. Dallas: IEEE, 2010. 1942-1945
    [13] Kim M, Yoo J, Kang K, Choi S. Nonnegative matrix partial co-factorization for spectral and temporal drum source separation. IEEE Journal of Selected Topics in Signal Processing, 2011, 5(6): 1192-1204 doi: 10.1109/JSTSP.2011.2158803
    [14] Hu Y, Liu G Z. Separation of singing voice using nonnegative matrix partial co-factorization for singer identification. IEEE Transactions on Audio, Speech, and Language Processing, 2015, 23(4): 643-653 doi: 10.1109/TASLP.2015.2396681
    [15] 路成, 田猛, 周健, 王华彬, 陶亮. L1/2稀疏约束卷积非负矩阵分解的单通道语音增强方法.声学学报, 2017, 42(3): 377-384 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=shengxxb201703015

    Lu Cheng, Tian Meng, Zhou Jian, Wang Hua-Bin, Tao Liang. A single-channel speech enhancement approach using convolutive non-negative matrix factorization with L1/2 sparse constraint. Acta Acustica, 2017, 42(3): 377-384 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=shengxxb201703015
    [16] Natarajan B K. Sparse approximate solutions to linear systems. SIAM Journal on Computing, 1995, 24(2): 227-234 doi: 10.1137/S0097539792240406
    [17] Candés E J, Li X D, Ma Y, Wright J. Robust principal component analysis? Journal of the ACM, 2009, 58(3): Article No. 11. http://d.old.wanfangdata.com.cn/Periodical/cjce200405015
    [18] Boersma P. Accurate short-term analysis of the fundamental frequency and the harmonics-to-noise ratio of a sampled sound. Proceedings of the Institute of Phonetic Sciences, 1993, 17: 97-110 2013. 704-708 http://www.cs.northwestern.edu/~pardo/courses/eecs352/papers/pitch%20tracking%20-%20boersma.pdf
    [19] Rix A W, Beerends J G, Hollier M P, Hekstra A P. Perceptual evaluation of speech quality (PESQ) --- a new method for speech quality assessment of telephone networks and codecs. In: Proceedings of the 2001 IEEE International Conference on Acoustics, Speech, and Signal Processing. Salt Lake City: IEEE, 2001. 749-752
    [20] Vincent E, Gribonval R, Fevotte C. Performance measurement in blind audio source separation. IEEE Transactions on Audio, Speech, and Language Processing, 2006, 14(4): 1462-1469 doi: 10.1109/TSA.2005.858005
    [21] Li Y P, Woodruff J, Wang D L. Monaural musical sound separation based on pitch and common amplitude modulation. IEEE Transactions on Audio, Speech, and Language Processing, 2009, 17(7): 1361-1371 doi: 10.1109/TASL.2009.2020886
    [22] van Segbroeck M. A robust frontend for VAD: Exploiting contextual, discriminative and spectral cues of human voice. In: Proceedings of the 2013 Interspeech. Lyon: Interspeech, 2013.
  • 加载中
图(7) / 表(1)
计量
  • 文章访问数:  1281
  • HTML全文浏览量:  123
  • PDF下载量:  145
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-01-26
  • 录用日期:  2018-07-15
  • 刊出日期:  2020-07-10

目录

    /

    返回文章
    返回