2.845

2023影响因子

(CJCR)

  • 中文核心
  • EI
  • 中国科技核心
  • Scopus
  • CSCD
  • 英国科学文摘

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

加权Möller算法的广义加权规则

杜柏阳 孔祥玉 冯晓伟 高迎彬 曹泽豪

杜柏阳, 孔祥玉, 冯晓伟, 高迎彬, 曹泽豪. 加权Möller算法的广义加权规则. 自动化学报, 2020, 46(1): 193-199. doi: 10.16383/j.aas.c180012
引用本文: 杜柏阳, 孔祥玉, 冯晓伟, 高迎彬, 曹泽豪. 加权Möller算法的广义加权规则. 自动化学报, 2020, 46(1): 193-199. doi: 10.16383/j.aas.c180012
DU Bo-Yang, KONG Xiang-Yu, FENG Xiao-Wei, GAO Ying-Bin, CAO Ze-Hao. Generalized Weighted Rules on Modified Möller Algorithm. ACTA AUTOMATICA SINICA, 2020, 46(1): 193-199. doi: 10.16383/j.aas.c180012
Citation: DU Bo-Yang, KONG Xiang-Yu, FENG Xiao-Wei, GAO Ying-Bin, CAO Ze-Hao. Generalized Weighted Rules on Modified Möller Algorithm. ACTA AUTOMATICA SINICA, 2020, 46(1): 193-199. doi: 10.16383/j.aas.c180012

加权Möller算法的广义加权规则

doi: 10.16383/j.aas.c180012
基金项目: 

国家自然科学基金 61374120

国家自然科学基金 61673387

详细信息
    作者简介:

    杜柏阳  西安高科技研究所博士研究生.主要研究方向为信号特征提取. E-mail: duboyangepgc@163.com

    冯晓伟  西安高科技研究所讲师.主要研究方向为特征提取, 信号处理, 大型工业过程监控. E-mail: xiaowei121416@163.com

    高迎彬  中国石油大学(北京)信息科学与工程学院讲师.主要研究方向为特征提取, 信号处理. E-mail: welcome8793@sina.com

    曹泽豪  西安高科技研究所硕士研究生.主要研究方向为多元信号分析.E-mail: czh17782759319@163.com

    通讯作者:

    孔祥玉  西安高科技研究所教授.主要研究方向为多元信号分析, 信号处理.本文通信作者. E-mail: xiangyukong01@163.com

Generalized Weighted Rules on Modified Möller Algorithm

Funds: 

National Natural Science Foundation of China 61374120

National Natural Science Foundation of China 61673387

More Information
    Author Bio:

    DU Bo-Yang  Ph. D. candidate at the Xi'an Researching Institute of High Technology. His main research interest is signal feature extraction

    FENG Xiao-Wei  Lecturer at the Xi'an Researching Institute of High Technology. His research interest covers feature extraction, signal processing and large-scale industrial process monitoring

    GAO Ying-Bin  Lecturer at School of Information Science and Engineering, China University of Petroleum (Beijing). His research interest covers feature extraction and signal processing

    CAO Ze-Hao  Master student candidate at the Xi'an Researching Institute of High Technology. His research interest covers multivariant signal analysis

    Corresponding author: KONG Xiang-Yu  Professor at the Xi'an Researching Institute of High Technology. His research interest covers multivariant signal analysis, and signal processing. Corresponding author of this paper
  • 摘要: 提出一套针对加权Möller算法的广义加权规则用于探讨改进并行提取次成分分析的理论和方法问题.该规则仅在加权Möller算法上引入一个加权规则参数, 通过调节参数后算法性能上的变化, 实现加权Möller算法稳定性在动力学层面上的分析, 探讨加权参数变化对算法稳定性的影响.基于常微分方程方法对所提出规则下的加权Möller算法进行稳定性证明, 并分析其中关键函数的性质.最后, MATLAB仿真验证了所提出规则的性能和算法性质.
    Recommended by Associate Editor TAN Ying
    1)  本文责任编委  谭营
  • 图  1  $p$和$\eta$的取值范围

    Fig.  1  Ranges of $p$ and $\eta$

    图  2  $\delta w$的变化, $p=1$处用深色标示

    Fig.  2  Change of $\delta w$ where $p=1$ is marked in deep color

    图  3  方向余弦曲线(上为$p=0.6$, 下为$p=1.5$)

    Fig.  3  Curves of the direction cosine ($p=0.6$ is on the top and $p=1.5$ is at the bottom)

    图  4  估计模值曲线(上为$p=0.6$, 下为$p=1.5$)

    Fig.  4  Curves of the estimated norm ($p=0.6$ is on the top and $p=1.5$ is at the bottom)

    图  5  特征值变化(上为$p=0.6$, 下为$p=1.5$)

    Fig.  5  Curves of the eigenvalues ($p=0.6$ is on the top and $p=1.5$ is at the bottom)

    图  6  正交性变化(上为$p=0.6$, 下为$p=1.5$)

    Fig.  6  Curves of the orthogonality ($p=0.6$ is on the top and $p=1.5$ is at the bottom)

    图  7  $\delta w$值变化(上为$p=0.6$, 下为$p=1.5$)

    Fig.  7  Curves of $\delta w$ ($p=0.6$ is on the top and $p=1.5$ is at the bottom)

    图  8  不同的$p$值对应的方向余弦变化

    Fig.  8  Curves of the direction cosine for different $p$

    图  9  不同的$p$值对应的估计模值变化

    Fig.  9  Curves of the estimated norm for different $p$

    图  10  不同的$p$值对应的特征值变化

    Fig.  10  Curves of the eigenvalues for different $p$

    图  11  去次成分的效果变化图

    Fig.  11  Minor-component-reducing graphs

    表  1  不同的$p$对应的重构误差值

    Table  1  Reconstruction error rates for different $p$

    $p$ 0.6 0.8 1.0 1.2 1.5
    重构误差值(%) 16.383 20.126 22.878 29.369 31.047
    下载: 导出CSV
  • [1] Gao K, Ahmad M O, Swamy M. Learning algorithm for total least-squares adaptive signal processing. Electronics Letters. 1992, 28(4): 430-432. doi: 10.1049/el:19920270
    [2] Feng D Z, Zheng W X, Jia Y. Neural network learning algorithms for tracking minor subspace in high-dimensional data stream. IEEE Transaction on Neural Networks, 2005, 16(3): 513-521 doi: 10.1109/TNN.2005.844854
    [3] 潘宗序, 禹晶, 肖创柏, 孙卫东.基于光谱相似性的高光谱图像超分辨率算法.自动化学报, 2014, 40(12): 2797-2807 doi: 10.3724/SP.J.1004.2014.02797

    Pan Zong-Xu, Yu Jing, Xiao Chuang-Bai, Sun Wei-Dong. Spectral similarity-based super resolution for hyperspectral images. Acta Automatica Sinica, 2014, 40(12): 2797-2807 doi: 10.3724/SP.J.1004.2014.02797
    [4] Mathew G, Reddy VU, Development and analysis of a neural network approach to pisarenko's harmonic retrieval method. IEEE Transaction on Signal Processing, 1994, 42(3): 663-667 doi: 10.1109/78.277859
    [5] 程宁, 刘文举.基于多统计模型和人耳听觉特性麦克风阵列后滤波语音增强算法.自动化学报, 2010, 36(1): 74-86 doi: 10.3724/SP.J.1004.2010.00074

    Cheng Ning, Lie Wen-Ju. Microphone array post-filter based on multi-statistical models and perceptual properties of human ears. Acta Automatica Sinica, 2010, 36(1): 74-86 doi: 10.3724/SP.J.1004.2010.00074
    [6] 齐美彬, 岳周龙, 疏坤, 蒋建国.基于广义关联聚类的分层关联多目标跟踪.自动化学报, 2017, 43(1): 152-160 doi: 10.16383/j.aas.2017.c150519

    Qi Mei-Bin, Yue Zhou-Long, Shu Kun, Jiang Jian-Guo. Multi-object tracking using hierarchical data association based on generalized correlation clustering graphs. Acta Automatica Sinica, 2017, 43(1): 152-160 doi: 10.16383/j.aas.2017.c150519
    [7] Lei Xu, Erkki Oja, Ching Y Suen. Modified Hebbian learning for curve and surface fitting. Neural Networks, 1992, 5(3): 441-457 doi: 10.1016/0893-6080(92)90006-5
    [8] Cirrincione Giansalvo, Cirrincione Maurizio, Hérault Jeanny, Van Huffel Sabine, The MCA EXIN neuron for the minor component analysis. IEEE Transaction on Neural Networks, 2002, 13(1): 160-187 doi: 10.1109/72.977295
    [9] Ralf Möller. A self-stabilizing learning rule for minorcomponent analysis. International Journal of Neural Systems, 2004, 14(1): 1-8 doi: 10.1142/S0129065704001863
    [10] Kong Xiang-Yu, Hu Chang-Hua, Han Chong-Zhao. A self-stabilizing MSA algorithm in high-dimension data stream. Neural Networks, 2010, 23(7): 865-871 doi: 10.1016/j.neunet.2010.04.001
    [11] Kong X Y, Hu C H, Ma H G, Han C Z, A unified self-stabilizing neural network algorithm for principal and minor components extraction. IEEE Transactions on Neural Networks and Learning Systems, 2012, 23(2): 185-198 doi: 10.1109/TNNLS.2011.2178564
    [12] Chen T P, Shun I A, Murata N, Sequential extraction of minor components. Neural Processing Letters, 2001, 13: 195-201 doi: 10.1023/A:1011388608203
    [13] Tan K K, Lv J H, Zhang Y, Huang S. Adaptive multiple minor directions extraction in parallel using a PCA neural network. Theoretical Computer Science, 2010, 411: 4200-4215 doi: 10.1016/j.tcs.2010.07.021
    [14] Thameri M, Abed-Meraim, K, Belouchrani A. Low complexity adaptive algorithms for principal and minor component analysis. Digital Signal Processing, 2013, 23: 19-29 doi: 10.1016/j.dsp.2012.09.007
    [15] Gao Y B, Kong X Y, Zhang H H, Hou L A, A weighted information criterion for multiple minor components and its adaptive extraction algorithms. Neural Networks, 2017, 89: 1-10 doi: 10.1016/j.neunet.2017.02.006
    [16] 高迎彬, 孔祥玉, 胡昌华, 侯立安, 并行提取多个次成分的改进型Möller算法.控制与决策, 2017, 32(3): 493-497 http://d.old.wanfangdata.com.cn/Periodical/kzyjc201703015

    Gao Ying-Bin, Kong Xiang-Yu, Hu Chang-Hua, Hou Li-An. Modified Möller algorithm for multiple minor components extraction. Control & Decision, 2017, 32(3): 493-497 http://d.old.wanfangdata.com.cn/Periodical/kzyjc201703015
    [17] 孔令智, 高迎彬, 李红增, 张华鹏.一种快速的多个主成分并行提取算法.自动化学报, 2017, 43(5): 835-842 doi: 10.16383/j.aas.2017.c160299

    Kong Ling-Zhi, Gao Ying-Bin, Li Hong-Zeng, Zhang Hua-Peng. A fast algorithm that extracts multiple principal components in parallel. Acta Automatica Sinica, 2017, 43(5): 835-842 doi: 10.16383/j.aas.2017.c160299
    [18] Toshihisa T. Generalized weighted rules for principal components tracking. IEEE Transactions on Signal Processing, 2005, 53(4): 1243-1253 doi: 10.1109/TSP.2005.843698
  • 加载中
图(11) / 表(1)
计量
  • 文章访问数:  1810
  • HTML全文浏览量:  421
  • PDF下载量:  122
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-01-09
  • 录用日期:  2018-05-29
  • 刊出日期:  2020-01-21

目录

    /

    返回文章
    返回