Research and Analysis of a Novel Heuristic Algorithm: Five-elements Cycle Optimization Algorithm
-
摘要: 借鉴中国古代哲学理论所描述的系统动态平衡方法, 提出了解决连续函数优化问题的五行环优化算法.首先, 分析了基于五行元素生克原理而建立的五行环模型, 并在该模型基础上, 构建了元素空间结构以及元素更新方法等关键环节, 从而实现了五行环优化算法.随后, 对五行环优化算法进行了性能分析和关键参数比较, 针对标准测试函数, 将五行环优化算法与其他17个机制各异的启发式优化算法进行了比较, 实验结果验证了五行环优化算法的有效性和通用性, 也表明了其在求解连续函数优化问题上具有较好的优化性能.Abstract: The five-elements cycle optimization algorithm (FECO) for continuous optimization problems is researched and analyzed in this paper. It is inspired by the theory of Five-elements which represents the performance of a dynamic balancing system. Firstly, the five-elements cycle model based on the mechanism of generation and restriction among five elements is analyzed. Afterwards, FECO is built for finding the optimal solution of continuous functions by designing the framework of element space and the pivotal operators. The performance and parameter comparison of FECO is given by experiment, the comparison with 17 optimization algorithms based on various mechanisms for two sets of benchmark functions is also given, which indicates the feasibility and universality of FECO.
-
Key words:
- Continuous optimization /
- five-elements cycle optimization /
- heuristic algorithms /
- benchmark functions
1) 本文责任编委 乔俊飞 -
表 1 用Friedman检验法(显著性水平0.05)比较参数$L$和$q$
Table 1 Comparison of $L$ and $q$ with Friedman test (significance value 0.05)
Function $L=5/q=20$ $L=10/q=10$ $L=20/q=5$ $L=50/q=2$ $L=100/q=1$ $f_1$ 3.22$\, \times\, 10^{-23}$ 7.65$\, \times\, 10^{-25}$ 1.64$\, \times\, 10^{-27}$ 3.65$\, \times\, 10^{-18}$ 1.99$\, \times\, 10^{3}$ $f_2$ 3.18$\, \times\, 10^{-16}$ 9.35$\, \times\, 10^{-18}$ 3.35$\, \times\, 10^{-20}$ 9.80$\, \times\, 10^{-1}$ 2.88$\, \times\, 10^{1}$ $f_3$ 1.47$\, \times\, 10^{2}$ 6.88$\, \times\, 10^{2}$ 1.35$\, \times\, 10^{3}$ 2.62$\, \times\, 10^{3}$ 1.22$\, \times\, 10^{4}$ $f_4$ 4.22$\, \times\, 10^{-1}$ 1.47$\, \times\, 10^{0}$ 3.07$\, \times\, 10^{0}$ 1.13$\, \times\, 10^{1}$ 4.67$\, \times\, 10^{1}$ $f_5$ 5.29$\, \times\, 10^{1}$ 5.59$\, \times\, 10^{1}$ 1.83$\, \times\, 10^{3}$ 1.39$\, \times\, 10^{2}$ 1.15$\, \times\, 10^{6}$ $f_6$ 0.00$\, \times\, 10^{0}$ 0.00$\, \times\, 10^{0}$ 1.37$\, \times\, 10^{-1}$ 1.11$\, \times\, 10^{2}$ 4.61$\, \times\, 10^{3 }$ $f_7$ 1.27$\, \times\, 10^{-2}$ 8.45$\, \times\, 10^{-3}$ 7.29$\, \times\, 10^{-3}$ 2.03$\, \times\, 10^{-2}$ 2.56$\, \times\, 10^{0}$ $f_8$ $-$1.15$\, \times\, 10^{4}$ $-$1.14$\, \times\, 10^{4}$ $-$1.10$\, \times\, 10^{4}$ $-$9.85$\, \times\, 10^{3}$ $-$7.97$\, \times\, 10^{3}$ $f_9$ 1.23$\, \times\, 10^{1}$ 1.31$\, \times\, 10^{1}$ 1.94$\, \times\, 10^{1}$ 5.79$\, \times\, 10^{1}$ 1.48$\, \times\, 10^{2 }$ $f_{10}$ 1.53$\, \times\, 10^{-12}$ 2.22$\, \times\, 10^{-13}$ 1.70$\, \times\, 10^{-1}$ 3.60$\, \times\, 10^{0}$ 1.42$\, \times\, 10^{1 }$ $f_{11}$ 6.10$\, \times\, 10^{-4}$ 1.24$\, \times\, 10^{-3}$ 4.34$\, \times\, 10^{-3}$ 1.17$\, \times\, 10^{-1}$ 1.80$\, \times\, 10^{1 }$ $f_{12}$ 4.07$\, \times\, 10^{-3}$ 2.64$\, \times\, 10^{-2}$ 7.53$\, \times\, 10^{-2}$ 4.58$\, \times\, 10^{-1}$ 5.21$\, \times\, 10^{5}$ $f_{13}$ 5.95$\, \times\, 10^{-2}$ 6.66$\, \times\, 10^{-1}$ 2.21$\, \times\, 10^{0}$ 1.32$\, \times\, 10^{1}$ 1.99$\, \times\, 10^{6 }$ $f_{14}$ 1.02$\, \times\, 10^{0}$ 1.06$\, \times\, 10^{0}$ 1.14$\, \times\, 10^{0}$ 1.37$\, \times\, 10^{0}$ 2.50$\, \times\, 10^{0 }$ $f_{15}$ 5.65$\, \times\, 10^{-4}$ 5.94$\, \times\, 10^{-4}$ 6.19$\, \times\, 10^{-4}$ 7.18$\, \times\, 10^{-4}$ 1.22$\, \times\, 10^{-3 }$ $f_{16}$ $-$1.03$\, \times\, 10^{0}$ $-$1.03$\, \times\, 10^{0}$ $-$1.03$\, \times\, 10^{0}$ $-$1.03$\, \times\, 10^{0}$ $-$1.03$\, \times\, 10^{0 }$ $f_{17}$ 3.98$\, \times\, 10^{-1}$ 3.98$\, \times\, 10^{-1}$ 3.98$\, \times\, 10^{-1}$ 3.98$\, \times\, 10^{-1}$ 3.98$\, \times\, 10^{-1}$ $f_{18}$ 3.00$\, \times\, 10^{0}$ 3.00$\, \times\, 10^{0}$ 3.00$\, \times\, 10^{0}$ 3.00$\, \times\, 10^{0}$ 3.00$\, \times\, 10^{0 }$ $f_{19}$ $-$3.86$\, \times\, 10^{0}$ $-$3.86$\, \times\, 10^{0}$ $-$3.86$\, \times\, 10^{0}$ $-$3.86$\, \times\, 10^{0}$ $-$3.86$\, \times\, 10^{0}$ $f_{20}$ $-$3.30$\, \times\, 10^{0}$ $-$3.31$\, \times\, 10^{0}$ $-$3.32$\, \times\, 10^{0}$ $-$3.29$\, \times\, 10^{0}$ $-$3.28$\, \times\, 10^{0}$ $f_{21}$ $-$1.00$\, \times\, 10^{1}$ $-$9.64$\, \times\, 10^{0}$ $-$8.37$\, \times\, 10^{0}$ $-$6.61$\, \times\, 10^{0}$ $-$4.69$\, \times\, 10^{0}$ $f_{22}$ $-$9.99$\, \times\, 10^{0}$ $-$9.84$\, \times\, 10^{0}$ $-$9.70$\, \times\, 10^{0}$ $-$7.07$\, \times\, 10^{0}$ $-$6.21$\, \times\, 10^{0}$ $f_{23}$ $-$1.03$\, \times\, 10^{1}$ $-$1.03$\, \times\, 10^{1}$ $-$8.62$\, \times\, 10^{0}$ $-$6.92$\, \times\, 10^{0}$ $-$4.93$\, \times\, 10^{0}$ Friedman排序 $\textbf{1.89}$ 1.91 2.41 3.78 5 表 2 用Friedman检验法(显著性水平0.05)比较参数$p_s$
Table 2 Comparison of $p_s$ with Friedman test (significance value 0.05)
Function $p_s=0.2$ $p_s=0.4$ $p_s=0.6$ $p_s=0.8$ $p_s=1.0$ $p_s=1.2$ $p_s=1.4$ $p_s=1.6$ $p_s=1.8$ $f_1$ 3.73$\, \times\, 10^{2}$ 1.04$\, \times\, 10^{-28}$ 2.76$\, \times\, 10^{-40}$ 4.57$\, \times\, 10^{-33}$ 3.22$\, \times\, 10^{-23}$ 1.11$\, \times\, 10^{-13}$ 5.40$\, \times\, 10^{-6}$ 7.63$\, \times\, 10^{-1}$ 5.05$\, \times\, 10^{2 }$ $f_2$ 8.94$\, \times\, 10^{-1}$ 3.43$\, \times\, 10^{-27}$ 5.25$\, \times\, 10^{-27}$ 3.75$\, \times\, 10^{-22}$ 3.18$\, \times\, 10^{-16}$ 2.06$\, \times\, 10^{-10}$ 1.67$\, \times\, 10^{-5}$ 6.46$\, \times\, 10^{-1}$ 2.81$\, \times\, 10^{1 }$ $f_3$ 6.14$\, \times\, 10^{3}$ 3.43$\, \times\, 10^{3}$ 1.52$\, \times\, 10^{3}$ 2.48$\, \times\, 10^{2}$ 1.47$\, \times\, 10^{2}$ 3.02$\, \times\, 10^{3}$ 1.41$\, \times\, 10^{4}$ 3.29$\, \times\, 10^{4}$ 5.52$\, \times\, 10^{4}$ $f_4$ 4.28$\, \times\, 10^{1}$ 2.60$\, \times\, 10^{1}$ 1.33$\, \times\, 10^{1}$ 1.52$\, \times\, 10^{0}$ 4.22$\, \times\, 10^{-1}$ 2.12$\, \times\, 10^{0}$ 1.03$\, \times\, 10^{1}$ 3.12$\, \times\, 10^{1}$ 4.95$\, \times\, 10^{1 }$ $f_5$ 1.46$\, \times\, 10^{5}$ 1.80$\, \times\, 10^{2}$ 8.00$\, \times\, 10^{1}$ 4.79$\, \times\, 10^{1}$ 5.29$\, \times\, 10^{1}$ 7.48$\, \times\, 10^{1}$ 1.92$\, \times\, 10^{3}$ 8.76$\, \times\, 10^{3}$ 4.36$\, \times\, 10^{5 }$ $f_6$ 3.85$\, \times\, 10^{2}$ 4.76$\, \times\, 10^{0}$ 1.96$\, \times\, 10^{-1}$ 3.92$\, \times\, 10^{-2}$ 0.00$\, \times\, 10^{0}$ 0.00$\, \times\, 10^{0}$ 0.00$\, \times\, 10^{0}$ 3.27$\, \times\, 10^{0}$ 6.33$\, \times\, 10^{2}$ $f_7$ 3.49$\, \times\, 10^{-1}$ 7.34$\, \times\, 10^{-2}$ 3.53$\, \times\, 10^{-2}$ 2.24$\, \times\, 10^{-2}$ 1.27$\, \times\, 10^{-2}$ 9.89$\, \times\, 10^{-3}$ 3.69$\, \times\, 10^{-2}$ 1.38$\, \times\, 10^{-1}$ 1.71$\, \times\, 10^{0 }$ $f_8$ $-$1.17$\, \times\, 10^{4}$ $-$1.18$\, \times\, 10^{4}$ $-$1.17$\, \times\, 10^{4}$ $-$1.15$\, \times\, 10^{4}$ $-$1.15$\, \times\, 10^{4}$ $-$1.10$\, \times\, 10^{4}$ $-$1.04$\, \times\, 10^{4}$ $-$9.75$\, \times\, 10^{3}$ $-$8.78$\, \times\, 10^{3}$ $f_9$ 2.03$\, \times\, 10^{1}$ 1.04$\, \times\, 10^{1}$ 1.04$\, \times\, 10^{1}$ 1.08$\, \times\, 10^{1}$ 1.23$\, \times\, 10^{1}$ 1.37$\, \times\, 10^{1}$ 1.83$\, \times\, 10^{1}$ 4.22$\, \times\, 10^{1}$ 1.48$\, \times\, 10^{2 }$ $f_{10}$ 4.97$\, \times\, 10^{0}$ 1.22$\, \times\, 10^{0}$ 5.48$\, \times\, 10^{-2}$ 1.39$\, \times\, 10^{-14}$ 1.53$\, \times\, 10^{-12}$ 1.31$\, \times\, 10^{-7}$ 3.92$\, \times\, 10^{-1}$ 6.94$\, \times\, 10^{0}$ 1.83$\, \times\, 10^{1}$ $f_{11}$ 3.83$\, \times\, 10^{0}$ 1.72$\, \times\, 10^{-2}$ 1.78$\, \times\, 10^{-3}$ 5.73$\, \times\, 10^{-4}$ 6.10$\, \times\, 10^{-4}$ 6.34$\, \times\, 10^{-6}$ 3.03$\, \times\, 10^{-3}$ 8.30$\, \times\, 10^{-1}$ 5.52$\, \times\, 10^{0}$ $f_{12}$ 1.21$\, \times\, 10^{3}$ 3.14$\, \times\, 10^{-1}$ 5.90$\, \times\, 10^{-2}$ 8.13$\, \times\, 10^{-3}$ 4.07$\, \times\, 10^{-3}$ 1.63$\, \times\, 10^{-2}$ 4.30$\, \times\, 10^{-3}$ 4.53$\, \times\, 10^{0}$ 8.29$\, \times\, 10^{4 }$ $f_{13}$ 1.15$\, \times\, 10^{5}$ 1.55$\, \times\, 10^{1}$ 2.98$\, \times\, 10^{0}$ 7.40$\, \times\, 10^{-2}$ 5.95$\, \times\, 10^{-2}$ 4.78$\, \times\, 10^{-3}$ 3.13$\, \times\, 10^{0}$ 5.90$\, \times\, 10^{1}$ 5.70$\, \times\, 10^{5 }$ $f_{14}$ 1.91$\, \times\, 10^{0}$ 1.19$\, \times\, 10^{0}$ 1.04$\, \times\, 10^{0}$ 1.10$\, \times\, 10^{0}$ 1.02$\, \times\, 10^{0}$ 1.02$\, \times\, 10^{0}$ 1.08$\, \times\, 10^{0}$ 1.04$\, \times\, 10^{0}$ 1.04$\, \times\, 10^{0}$ $f_{15}$ 9.93$\, \times\, 10^{-4}$ 6.09$\, \times\, 10^{-4}$ 5.93$\, \times\, 10^{-4}$ 5.50$\, \times\, 10^{-4}$ 5.65$\, \times\, 10^{-4}$ 5.46$\, \times\, 10^{-4}$ 6.20$\, \times\, 10^{-4}$ 6.55$\, \times\, 10^{-4}$ 7.44$\, \times\, 10^{-4 }$ $f_{16}$ $-$1.03$\, \times\, 10^{0}$ $-$1.03$\, \times\, 10^{0}$ $-$1.03$\, \times\, 10^{0}$ $-$1.03$\, \times\, 10^{0}$ $-$1.03$\, \times\, 10^{0}$ $-$1.03$\, \times\, 10^{0}$ $-$1.02$\, \times\, 10^{0}$ $-$1.02$\, \times\, 10^{0}$ $-$1.01$\, \times\, 10^{0}$ $f_{17}$ 3.98$\, \times\, 10^{-1}$ 3.98$\, \times\, 10^{-1}$ 3.98$\, \times\, 10^{-1}$ 3.98$\, \times\, 10^{-1}$ 3.98$\, \times\, 10^{-1}$ 3.98$\, \times\, 10^{-1}$ 3.98$\, \times\, 10^{-1}$ 3.98$\, \times\, 10^{-1}$ 3.98$\, \times\, 10^{-1 }$ $f_{18}$ 3.00$\, \times\, 10^{0}$ 3.00$\, \times\, 10^{0}$ 3.00$\, \times\, 10^{0}$ 3.00$\, \times\, 10^{0}$ 3.00$\, \times\, 10^{0}$ 3.00$\, \times\, 10^{0}$ 3.00$\, \times\, 10^{0}$ 3.00$\, \times\, 10^{0}$ 3.00$\, \times\, 10^{0 }$ $f_{19}$ $-$3.86$\, \times\, 10^{0}$ $-$3.86$\, \times\, 10^{0}$ $-$3.86$\, \times\, 10^{0}$ $-$3.86$\, \times\, 10^{0}$ $-$3.86$\, \times\, 10^{0}$ $-$3.86$\, \times\, 10^{0}$ $-$3.86$\, \times\, 10^{0}$ $-$3.86$\, \times\, 10^{0}$ $-$3.86$\, \times\, 10^{0 }$ $f_{20}$ $-$3.27$\, \times\, 10^{0}$ $-$3.28$\, \times\, 10^{0}$ $-$3.27$\, \times\, 10^{0}$ $-$3.29$\, \times\, 10^{0}$ $-$3.30$\, \times\, 10^{0}$ $-$3.29$\, \times\, 10^{0}$ $-$3.27$\, \times\, 10^{0}$ $-$3.24$\, \times\, 10^{0}$ $-$3.23$\, \times\, 10^{0}$ $f_{21}$ $-$8.15$\, \times\, 10^{0}$ $-$9.38$\, \times\, 10^{0}$ $-$9.66$\, \times\, 10^{0}$ $-$9.99$\, \times\, 10^{0}$ $-$1.00$\, \times\, 10^{1}$ $-$9.90$\, \times\, 10^{0}$ $-$9.93$\, \times\, 10^{0}$ $-$9.94$\, \times\, 10^{0}$ $-$9.24$\, \times\, 10^{0}$ $f_{22}$ $-$7.29$\, \times\, 10^{0}$ $-$9.42$\, \times\, 10^{0}$ $-$9.75$\, \times\, 10^{0}$ $-$1.02$\, \times\, 10^{1}$ $-$9.99$\, \times\, 10^{0}$ $-$1.04$\, \times\, 10^{1}$ $-$1.01$\, \times\, 10^{1}$ $-$9.99$\, \times\, 10^{0}$ $-$9.93$\, \times\, 10^{0}$ $f_{23}$ $-$8.11$\, \times\, 10^{0}$ $-$9.00$\, \times\, 10^{0}$ $-$1.02$\, \times\, 10^{1}$ $-$9.89$\, \times\, 10^{0}$ $-$1.03$\, \times\, 10^{1}$ $-$1.03$\, \times\, 10^{1}$ $-$1.02$\, \times\, 10^{1}$ $-$1.04$\, \times\, 10^{1}$ $-$9.56$\, \times\, 10^{0 }$ Friedman排序 7.04 4.78 3.65 3.04 $\textbf{2.65}$ 3.39 5.30 6.61 8.52 表 3 用Friedman检验法(显著性水平0.05)比较参数$p_m$
Table 3 Comparison of $p_m$ with Friedman test (significance value 0.05)
Function $p_m=0.0$ $p_m=0.1$ $p_m=0.2$ $p_m=0.3$ $p_m=0.4$ $p_m=0.5$ $p_m=0.6$ $p_m=0.7$ $p_m=0.8$ $p_m=0.9$ $p_m=1.0$ $f_1$ 9.97$\, \times\, 10^{3}$ 3.43$\, \times\, 10^{3}$ 5.14$\, \times\, 10^{2}$ 5.55$\, \times\, 10^{0}$ 7.19$\, \times\, 10^{-26}$ 2.80$\, \times\, 10^{-54}$ 8.01$\, \times\, 10^{-49 }$ 1.87$\, \times\, 10^{-40}$ 6.54$\, \times\, 10^{-32}$ 3.22$\, \times\, 10^{-23}$ 4.53$\, \times\, 10^{4}$ $f_2$ 6.45$\, \times\, 10^{1}$ 4.08$\, \times\, 10^{1}$ 1.82$\, \times\, 10^{1}$ 4.30$\, \times\, 10^{0}$ 9.80$\, \times\, 10^{-1}$ 3.92$\, \times\, 10^{-1 }$ 1.96$\, \times\, 10^{-1}$ 3.41$\, \times\, 10^{-27}$ 7.72$\, \times\, 10^{-22}$ 3.18$\, \times\, 10^{-16}$ 1.03$\, \times\, 10^{2 }$ $f_3$ 2.91$\, \times\, 10^{4}$ 2.22$\, \times\, 10^{4}$ 1.58$\, \times\, 10^{4}$ 7.56$\, \times\, 10^{3}$ 2.82$\, \times\, 10^{3}$ 2.42$\, \times\, 10^{3 }$ 2.12$\, \times\, 10^{3}$ 1.53$\, \times\, 10^{3}$ 1.08$\, \times\, 10^{3}$ 1.47$\, \times\, 10^{2}$ 5.68$\, \times\, 10^{4 }$ $f_4$ 5.37$\, \times\, 10^{1}$ 4.72$\, \times\, 10^{1}$ 4.00$\, \times\, 10^{1}$ 2.87$\, \times\, 10^{1}$ 7.44$\, \times\, 10^{0}$ 8.10$\, \times\, 10^{-1 }$ 2.19$\, \times\, 10^{-1}$ 1.69$\, \times\, 10^{-1}$ 2.25$\, \times\, 10^{-1}$ 4.22$\, \times\, 10^{-1}$ 7.67$\, \times\, 10^{1 }$ $f_5$ 8.71$\, \times\, 10^{6}$ 2.01$\, \times\, 10^{6}$ 2.25$\, \times\, 10^{5}$ 6.37$\, \times\, 10^{3}$ 2.00$\, \times\, 10^{3}$ 1.87$\, \times\, 10^{3 }$ 9.59$\, \times\, 10^{1}$ 3.69$\, \times\, 10^{1}$ 5.80$\, \times\, 10^{1}$ 5.29$\, \times\, 10^{1}$ 1.20$\, \times\, 10^{8 }$ $f_6$ 1.20$\, \times\, 10^{4}$ 5.37$\, \times\, 10^{3}$ 1.58$\, \times\, 10^{3}$ 3.35$\, \times\, 10^{2}$ 7.03$\, \times\, 10^{1}$ 1.51$\, \times\, 10^{1 }$ 1.76$\, \times\, 10^{0}$ 1.37$\, \times\, 10^{0}$ 1.57$\, \times\, 10^{-1}$ 0.00$\, \times\, 10^{0}$ 4.40$\, \times\, 10^{4}$ $f_7$ 7.62$\, \times\, 10^{0}$ 2.64$\, \times\, 10^{0}$ 1.28$\, \times\, 10^{0}$ 5.08$\, \times\, 10^{-1}$ 2.24$\, \times\, 10^{-1}$ 1.45$\, \times\, 10^{-1 }$ 6.80$\, \times\, 10^{-2}$ 4.88$\, \times\, 10^{-2}$ 2.65$\, \times\, 10^{-2}$ 1.27$\, \times\, 10^{-2}$ 5.67$\, \times\, 10^{1 }$ $f_8$ $-$7.10$\, \times\, 10^{3}$ $-$7.71$\, \times\, 10^{3}$ $-$8.25$\, \times\, 10^{3}$ $-$8.69$\, \times\, 10^{3}$ $-$8.81$\, \times\, 10^{3}$ $-$9.31$\, \times\, 10^{3 }$ $-$9.73$\, \times\, 10^{3}$ $-$1.00$\, \times\, 10^{4}$ $-$1.05$\, \times\, 10^{4}$ $-$1.15$\, \times\, 10^{4}$ $-$4.61$\, \times\, 10^{3 }$ $f_9$ 1.89$\, \times\, 10^{2}$ 1.58$\, \times\, 10^{2}$ 1.39$\, \times\, 10^{2}$ 1.08$\, \times\, 10^{2}$ 9.11$\, \times\, 10^{1}$ 7.68$\, \times\, 10^{1 }$ 5.27$\, \times\, 10^{1}$ 3.90$\, \times\, 10^{1}$ 2.66$\, \times\, 10^{1}$ 1.23$\, \times\, 10^{1}$ 3.14$\, \times\, 10^{2 }$ $f_{10}$ 1.70$\, \times\, 10^{1}$ 1.44$\, \times\, 10^{1}$ 1.10$\, \times\, 10^{1}$ 6.69$\, \times\, 10^{0}$ 4.13$\, \times\, 10^{0}$ 2.45$\, \times\, 10^{0 }$ 8.55$\, \times\, 10^{-1}$ 2.13$\, \times\, 10^{-1}$ 2.26$\, \times\, 10^{-2}$ 1.53$\, \times\, 10^{-12}$ 1.97$\, \times\, 10^{1}$ $f_{11}$ 9.11$\, \times\, 10^{1}$ 3.01$\, \times\, 10^{1}$ 6.56$\, \times\, 10^{0}$ 9.69$\, \times\, 10^{-1}$ 5.39$\, \times\, 10^{-2}$ 1.93$\, \times\, 10^{-2 }$ 9.21$\, \times\, 10^{-3}$ 3.09$\, \times\, 10^{-3}$ 9.18$\, \times\, 10^{-4}$ 6.10$\, \times\, 10^{-4}$ 3.83$\, \times\, 10^{2 }$ $f_{12}$ 5.70$\, \times\, 10^{6}$ 8.31$\, \times\, 10^{5}$ 2.34$\, \times\, 10^{3}$ 4.86$\, \times\, 10^{0}$ 7.95$\, \times\, 10^{-1}$ 5.19$\, \times\, 10^{-1 }$ 2.66$\, \times\, 10^{-1}$ 2.20$\, \times\, 10^{-1}$ 7.14$\, \times\, 10^{-2}$ 4.07$\, \times\, 10^{-3}$ 2.24$\, \times\, 10^{8}$ $f_{13}$ 2.39$\, \times\, 10^{7}$ 3.24$\, \times\, 10^{6}$ 8.92$\, \times\, 10^{4}$ 6.24$\, \times\, 10^{1}$ 6.66$\, \times\, 10^{0}$ 2.05$\, \times\, 10^{0 }$ 2.45$\, \times\, 10^{0}$ 9.56$\, \times\, 10^{-1}$ 5.66$\, \times\, 10^{-1}$ 5.95$\, \times\, 10^{-2}$ 5.39$\, \times\, 10^{8}$ $f_{14}$ 1.94$\, \times\, 10^{0}$ 2.02$\, \times\, 10^{0}$ 1.41$\, \times\, 10^{0}$ 1.11$\, \times\, 10^{0}$ 1.09$\, \times\, 10^{0}$ 9.98$\, \times\, 10^{-1}$ 1.04$\, \times\, 10^{0}$ 9.98$\, \times\, 10^{-1}$ 1.02$\, \times\, 10^{0}$ 1.02$\, \times\, 10^{0}$ 2.26$\, \times\, 10^{0 }$ $f_{15}$ 6.63$\, \times\, 10^{-3}$ 3.32$\, \times\, 10^{-3}$ 3.82$\, \times\, 10^{-3}$ 2.99$\, \times\, 10^{-3}$ 3.22$\, \times\, 10^{-3}$ 2.02$\, \times\, 10^{-3}$ 9.00$\, \times\, 10^{-4}$ 1.13$\, \times\, 10^{-3}$ 4.26$\, \times\, 10^{-4}$ 5.65$\, \times\, 10^{-4}$ 4.09$\, \times\, 10^{-3 }$ $f_{16}$ $-$1.03$\, \times\, 10^{0}$ $-$1.03$\, \times\, 10^{0}$ $-$1.03$\, \times\, 10^{0}$ $-$1.03$\, \times\, 10^{0}$ $-$1.03$\, \times\, 10^{0}$ $-$1.03$\, \times\, 10^{0 }$ $-$1.03$\, \times\, 10^{0}$ $-$1.03$\, \times\, 10^{0}$ $-$1.03$\, \times\, 10^{0}$ $-$1.03$\, \times\, 10^{0}$ $-$1.02$\, \times\, 10^{0 }$ $f_{17}$ 3.98$\, \times\, 10^{-1}$ 3.98$\, \times\, 10^{-1}$ 3.98$\, \times\, 10^{-1}$ 3.98$\, \times\, 10^{-1}$ 3.98$\, \times\, 10^{-1}$ 3.98$\, \times\, 10^{-1}$ 3.98$\, \times\, 10^{-1}$ 3.98$\, \times\, 10^{-1}$ 3.98$\, \times\, 10^{-1}$ 3.98$\, \times\, 10^{-1}$ 3.98$\, \times\, 10^{-1}$ $f_{18}$ 3.53$\, \times\, 10^{0}$ 3.00$\, \times\, 10^{0}$ 3.53$\, \times\, 10^{0}$ 3.00$\, \times\, 10^{0}$ 3.00$\, \times\, 10^{0}$ 3.00$\, \times\, 10^{0}$ 3.00$\, \times\, 10^{0}$ 3.00$\, \times\, 10^{0}$ 3.00$\, \times\, 10^{0}$ 3.00$\, \times\, 10^{0}$ 3.01$\, \times\, 10^{0}$ $f_{19}$ $-$3.86$\, \times\, 10^{0}$ $-$3.86$\, \times\, 10^{0}$ $-$3.86$\, \times\, 10^{0}$ $-$3.86$\, \times\, 10^{0}$ $-$3.86$\, \times\, 10^{0}$ $-$3.86$\, \times\, 10^{0 }$ $-$3.86$\, \times\, 10^{0}$ $-$3.86$\, \times\, 10^{0}$ $-$3.86$\, \times\, 10^{0}$ $-$3.86$\, \times\, 10^{0}$ $-$3.86$\, \times\, 10^{0 }$ $f_{20}$ $-$3.26$\, \times\, 10^{0}$ $-$3.27$\, \times\, 10^{0}$ $-$3.28$\, \times\, 10^{0}$ $-$3.27$\, \times\, 10^{0}$ $-$3.27$\, \times\, 10^{0}$ $-$3.26$\, \times\, 10^{0}$ $-$3.25$\, \times\, 10^{0}$ $-$3.26$\, \times\, 10^{0}$ $-$3.26$\, \times\, 10^{0}$ $-$3.30$\, \times\, 10^{0}$ $-$3.08$\, \times\, 10^{0 }$ $f_{21}$ $-$5.73$\, \times\, 10^{0}$ $-$5.38$\, \times\, 10^{0}$ $-$5.43$\, \times\, 10^{0}$ $-$6.01$\, \times\, 10^{0}$ $-$5.10$\, \times\, 10^{0}$ $-$5.66$\, \times\, 10^{0 }$ $-$6.61$\, \times\, 10^{0}$ $-$8.13$\, \times\, 10^{0}$ $-$9.10$\, \times\, 10^{0}$ $-$1.00$\, \times\, 10^{1}$ $-$5.09$\, \times\, 10^{0 }$ $f_{22}$ $-$6.02$\, \times\, 10^{0}$ $-$5.84$\, \times\, 10^{0}$ $-$6.17$\, \times\, 10^{0}$ $-$5.37$\, \times\, 10^{0}$ $-$6.82$\, \times\, 10^{0}$ $-$6.55$\, \times\, 10^{0 }$ $-$7.66$\, \times\, 10^{0}$ $-$8.83$\, \times\, 10^{0}$ $-$1.02$\, \times\, 10^{1}$ $-$9.99$\, \times\, 10^{0}$ $-$4.70$\, \times\, 10^{0 }$ $f_{23}$ $-$5.27$\, \times\, 10^{0}$ $-$5.23$\, \times\, 10^{0}$ $-$5.98$\, \times\, 10^{0}$ $-$5.17$\, \times\, 10^{0}$ $-$6.45$\, \times\, 10^{0}$ $-$7.78$\, \times\, 10^{0}$ $-$7.84$\, \times\, 10^{0}$ $-$9.05$\, \times\, 10^{0}$ $-$9.78$\, \times\, 10^{0}$ $-$1.03$\, \times\, 10^{1}$ $-$5.04$\, \times\, 10^{0 }$ Friedman排序 6.60 6.05 5.70 6.25 5.15 5.00 5.45 5.00 5.20 $\textbf{4.90}$ 10.70 表 4 用Friedman检验法(显著性水平0.05)比较权重系数$w_{gp}$, $w_{rp}$, $w_{ga}$, $w_{ra}$
Table 4 Comparison of $w_{gp}$, $w_{rp}$, $w_{ga}$, $w_{ra}$ with Friedman test (significance value 0.05)
Function $w_{gp}=w_{rp}=w_{ga}=w_{ra}=1$ $w_{gp}$, $w_{rp}$, $w_{ga}$, $w_{ra}$为随机数 $f_1$ 3.22$\, \times\, 10^{-23}$ 1.79$\, \times\, 10^{-19}$ $f_2$ 3.18$\, \times\, 10^{-16}$ 5.71$\, \times\, 10^{-14}$ $f_3$ 1.47$\, \times\, 10^{2}$ 7.04$\, \times\, 10^{2 }$ $f_4$ 4.22$\, \times\, 10^{-1}$ 8.05$\, \times\, 10^{-1}$ $f_5$ 5.29$\, \times\, 10^{1}$ 5.91$\, \times\, 10^{1}$ $f_6$ 0.00$\, \times\, 10^{0}$ 1.96$\, \times\, 10^{-2}$ $f_7$ 1.27$\, \times\, 10^{-2}$ 1.52$\, \times\, 10^{-2 }$ $f_8$ $-$1.15$\, \times\, 10^{4}$ $-$1.10$\, \times\, 10^{4 }$ $f_9$ 1.23$\, \times\, 10^{1}$ 1.87$\, \times\, 10^{1}$ $f_{10}$ 1.53$\, \times\, 10^{-12}$ 1.10$\, \times\, 10^{-10 }$ $f_{11}$ 6.10$\, \times\, 10^{-4}$ 2.17$\, \times\, 10^{-4} $ $f_{12}$ 4.07$\, \times\, 10^{-3}$ 1.63$\, \times\, 10^{-2 }$ $f_{13}$ 5.95$\, \times\, 10^{-2}$ 1.88$\, \times\, 10^{-1 }$ $f_{14}$ 1.02$\, \times\, 10^{0}$ 1.08$\, \times\, 10^{0 }$ $f_{15}$ 5.65$\, \times\, 10^{-4}$ 5.45$\, \times\, 10^{-4}$ $f_{16}$ $-$1.03$\, \times\, 10^{0}$ $-$1.03$\, \times\, 10^{0 }$ $f_{17}$ 3.98$\, \times\, 10^{-1}$ 3.98$\, \times\, 10^{-1}$ $f_{18}$ 3.00$\, \times\, 10^{0}$ 3.00$\, \times\, 10^{0 }$ $f_{19}$ $-$3.86$\, \times\, 10^{0}$ $-$3.86$\, \times\, 10^{0 }$ $f_{20}$ $-$3.30$\, \times\, 10^{0}$ $-$3.27$\, \times\, 10^{0 }$ $f_{21}$ $-$1.00$\, \times\, 10^{1}$ $-$9.96$\, \times\, 10^{0 }$ $f_{22}$ $-$9.99$\, \times\, 10^{0}$ $-$1.00$\, \times\, 10^{1}$ $f_{23}$ $-$1.03$\, \times\, 10^{1}$ $-$9.52$\, \times\, 10^{0 }$ Friedman排序 $\textbf{1.13}$ 1.87 表 5 FECO优化23个测试函数的优化结果
Table 5 Optimization results of FECO for 23 benchmark functions
Function 最好Best 最差Worst 平均Mean 标准差StdDev $f_1$ 1.27$\, \times\, 10^{-24}$ 1.15$\, \times\, 10^{-22}$ 3.22$\, \times\, 10^{-23}$ 2.71$\, \times\, 10^{-23 }$ $f_2$ 1.16$\, \times\, 10^{-16}$ 9.84$\, \times\, 10^{-16}$ 3.18$\, \times\, 10^{-16}$ 1.68$\, \times\, 10^{-16 }$ $f_3$ 1.43$\, \times\, 10^{1}$ 4.65$\, \times\, 10^{2}$ 1.47$\, \times\, 10^{2}$ 1.16$\, \times\, 10^{2 }$ $f_4$ 1.51$\, \times\, 10^{-1}$ 1.59$\, \times\, 10^{0}$ 4.22$\, \times\, 10^{-1}$ 2.59$\, \times\, 10^{-1 }$ $f_5$ 1.18$\, \times\, 10^{0}$ 1.91$\, \times\, 10^{2}$ 5.29$\, \times\, 10^{1}$ 3.84$\, \times\, 10^{1 }$ $f_6$ 0.00$\, \times\, 10^{0}$ 0.00$\, \times\, 10^{0}$ 0.00$\, \times\, 10^{0}$ 0.00$\, \times\, 10^{0 }$ $f_7$ 4.17$\, \times\, 10^{-3}$ 2.87$\, \times\, 10^{-2}$ 1.27$\, \times\, 10^{-2}$ 5.10$\, \times\, 10^{-3 }$ $f_8$ $-$1.22$\, \times\, 10^{4}$ $-$1.09$\, \times\, 10^{4}$ $-$1.15$\, \times\, 10^{4}$ 3.29$\, \times\, 10^{2 }$ $f_9$ 4.97$\, \times\, 10^{0}$ 2.49$\, \times\, 10^{1}$ 1.23$\, \times\, 10^{1}$ 5.24$\, \times\, 10^{0 }$ $f_{10}$ 4.88$\, \times\, 10^{-13}$ 4.58$\, \times\, 10^{-12}$ 1.53$\, \times\, 10^{-12}$ 8.44$\, \times\, 10^{-13 }$ $f_{11}$ 0.00$\, \times\, 10^{0}$ 1.64$\, \times\, 10^{-2}$ 6.10$\, \times\, 10^{-4}$ 2.85$\, \times\, 10^{-3 }$ $f_{12}$ 7.25$\, \times\, 10^{-24}$ 1.04$\, \times\, 10^{-1}$ 4.07$\, \times\, 10^{-3}$ 2.03$\, \times\, 10^{-2 }$ $f_{13}$ 8.50$\, \times\, 10^{-20}$ 3.02$\, \times\, 10^{0}$ 5.95$\, \times\, 10^{-2}$ 4.23$\, \times\, 10^{-1 }$ $f_{14}$ 9.98$\, \times\, 10^{-1}$ 1.99$\, \times\, 10^{0}$ 1.02$\, \times\, 10^{0}$ 1.40$\, \times\, 10^{-1 }$ $f_{15}$ 3.08$\, \times\, 10^{-4}$ 8.08$\, \times\, 10^{-4}$ 5.65$\, \times\, 10^{-4}$ 1.50$\, \times\, 10^{-4 }$ $f_{16}$ $-$1.03$\, \times\, 10^{0}$ $-$1.00$\, \times\, 10^{0}$ $-$1.03$\, \times\, 10^{0}$ 6.52$\, \times\, 10^{-3 }$ $f_{17}$ 3.98$\, \times\, 10^{-1}$ 3.98$\, \times\, 10^{-1}$ 3.98$\, \times\, 10^{-1}$ 1.06$\, \times\, 10^{-6 }$ $f_{18}$ 3.00$\, \times\, 10^{0}$ 3.00$\, \times\, 10^{0}$ 3.00$\, \times\, 10^{0}$ 3.58$\, \times\, 10^{-14 }$ $f_{19}$ $-$3.86$\, \times\, 10^{0}$ $-$3.86$\, \times\, 10^{0}$ $-$3.86$\, \times\, 10^{0}$ 6.57$\, \times\, 10^{-7 }$ $f_{20}$ $-$3.32$\, \times\, 10^{0}$ $-$3.20$\, \times\, 10^{0}$ $-$3.30$\, \times\, 10^{0}$ 3.84$\, \times\, 10^{-2 }$ $f_{21}$ $-$1.02$\, \times\, 10^{1}$ $-$5.10$\, \times\, 10^{0}$ $-$1.00$\, \times\, 10^{1}$ 7.22$\, \times\, 10^{-1 }$ $f_{22}$ $-$1.04$\, \times\, 10^{1}$ $-$4.64$\, \times\, 10^{0}$ $-$9.99$\, \times\, 10^{0}$ 1.36$\, \times\, 10^{0 }$ $f_{23}$ $-$1.05$\, \times\, 10^{1}$ $-$5.18$\, \times\, 10^{0}$ $-$1.03$\, \times\, 10^{1}$ 9.72$\, \times\, 10^{-1 }$ 表 6 FECO算法与其他启发式算法的比较(1)
Table 6 Comparison between FECO and other heuristic algorithms (1)
GA CEP FEP CES FES DE G3PCX PSO $f_1$ 3.17$\, \times\, 10^{0}$ 2.20$\, \times\, 10^{-4}$ 5.70$\, \times\, 10^{-4}$ 3.40$\, \times\, 10^{-5}$ 2.50$\, \times\, 10^{-4}$ 6.58$\, \times\, 10^{-6}$ 6.40$\, \times\, 10^{-79}$ 3.69$\, \times\, 10^{-37 }$ 算法排序 15 11 13 10 12 9 1 2 $f_2$ 5.77$\, \times\, 10^{-1}$ 2.60$\, \times\, 10^{-3}$ 8.10$\, \times\, 10^{-3}$ 2.10$\, \times\, 10^{-2}$ 6.00$\, \times\, 10^{-2}$ 2.89$\, \times\, 10^{-4}$ 2.80$\, \times\, 10^{1}$ 2.92$\, \times\, 10^{-24}$ 算法排序 14 8 9 10 12 6 16 1 $f_3$ 9.75$\, \times\, 10^{3}$ 5.00$\, \times\, 10^{-2}$ 1.60$\, \times\, 10^{-2}$ 1.30$\, \times\, 10^{-4}$ 1.40$\, \times\, 10^{-3}$ 1.21$\, \times\, 10^{4}$ 1.06$\, \times\, 10^{-76}$ 1.20$\, \times\, 10^{-3}$ 算法排序 15 10 9 6 8 16 1 7 $f_4$ 7.96$\, \times\, 10^{0}$ 2.00$\, \times\, 10^{0}$ 3.00$\, \times\, 10^{-1}$ 3.50$\, \times\, 10^{-1}$ 5.50$\, \times\, 10^{-3}$ 5.79$\, \times\, 10^{0}$ 4.54$\, \times\, 10^{1}$ 4.12$\, \times\, 10^{-1 }$ 算法排序 14 11 7 8 2 12 15 9 $f_5$ 3.39$\, \times\, 10^{2}$ 6.17$\, \times\, 10^{0}$ 5.06$\, \times\, 10^{0}$ 6.69$\, \times\, 10^{0}$ 3.33$\, \times\, 10^{1}$ 9.34$\, \times\, 10^{1}$ 3.09$\, \times\, 10^{0}$ 3.74$\, \times\, 10^{1 }$ 算法排序 15 3 2 4 8 14 1 9 $f_6$ 3.70$\, \times\, 10^{0}$ 5.78$\, \times\, 10^{2}$ 0.00$\, \times\, 10^{0}$ 4.11$\, \times\, 10^{2}$ 0.00$\, \times\, 10^{0}$ 0.00$\, \times\, 10^{0}$ 9.46$\, \times\, 10^{1}$ 1.46$\, \times\, 10^{-1 }$ 算法排序 13 16 1 15 1 1 14 9 $f_7$ 1.05$\, \times\, 10^{-1}$ 1.80$\, \times\, 10^{-2}$ 7.60$\, \times\, 10^{-3}$ 3.00$\, \times\, 10^{-2}$ 1.20$\, \times\, 10^{-2}$ 3.97$\, \times\, 10^{-2}$ 9.80$\, \times\, 10^{-1}$ 9.90$\, \times\, 10^{-3 }$ 算法排序 14 9 4 10 6 11 16 5 $f_8$ $-$1.26$\, \times\, 10^{4}$ $-$7.92$\, \times\, 10^{3}$ $-$1.26$\, \times\, 10^{4}$ $-$7.55$\, \times\, 10^{3}$ $-$1.26$\, \times\, 10^{4}$ $-$1.26$\, \times\, 10^{4}$ $-$2.58$\, \times\, 10^{3}$ $-$9.66$\, \times\, 10^{3 }$ 算法排序 5 10 7 11 6 2 15 9 $f_9$ 6.51$\, \times\, 10^{-1}$ 8.90$\, \times\, 10^{1}$ 4.60$\, \times\, 10^{-2}$ 7.08$\, \times\, 10^{1}$ 1.60$\, \times\, 10^{-1}$ 7.26$\, \times\, 10^{-5}$ 1.74$\, \times\, 10^{2}$ 2.08$\, \times\, 10^{1 }$ 算法排序 8 14 5 13 6 2 15 11 $f_{10}$ 8.68$\, \times\, 10^{-1}$ 9.20$\, \times\, 10^{0}$ 1.80$\, \times\, 10^{-2}$ 9.07$\, \times\, 10^{0}$ 1.20$\, \times\, 10^{-2}$ 7.14$\, \times\, 10^{-4}$ 1.35$\, \times\, 10^{1}$ 1.34$\, \times\, 10^{-3}$ 算法排序 11 14 8 13 7 4 15 5 $f_{11}$ 1.00$\, \times\, 10^{0}$ 8.60$\, \times\, 10^{-2}$ 1.60$\, \times\, 10^{-2}$ 3.80$\, \times\, 10^{-1}$ 3.70$\, \times\, 10^{-2}$ 9.05$\, \times\, 10^{-5}$ 1.13$\, \times\, 10^{-2}$ 2.32$\, \times\, 10^{-1 }$ 算法排序 14 11 7 13 9 1 6 12 $f_{12}$ 4.36$\, \times\, 10^{-2}$ 1.76$\, \times\, 10^{0}$ 9.20$\, \times\, 10^{-6}$ 1.18$\, \times\, 10^{0}$ 2.80$\, \times\, 10^{-2}$ 1.89$\, \times\, 10^{-7}$ 4.59$\, \times\, 10^{0}$ 3.95$\, \times\, 10^{-2 }$ 算法排序 9 13 3 12 7 2 15 8 $f_{13}$ 1.68$\, \times\, 10^{-1}$ 1.40$\, \times\, 10^{0}$ 1.60$\, \times\, 10^{-4}$ 1.39$\, \times\, 10^{0}$ 4.70$\, \times\, 10^{-5}$ 9.52$\, \times\, 10^{-7}$ 2.35$\, \times\, 10^{1}$ 5.05$\, \times\, 10^{-2 }$ 算法排序 9 12 5 11 4 2 15 7 $f_{14}$ 9.99$\, \times\, 10^{-1}$ 1.66$\, \times\, 10^{0}$ 1.22$\, \times\, 10^{0}$ 2.16$\, \times\, 10^{0}$ 1.20$\, \times\, 10^{0}$ 1.58$\, \times\, 10^{0}$ 1.23$\, \times\, 10^{1}$ 1.02$\, \times\, 10^{0 }$ 算法排序 5 11 9 13 8 10 16 7 $f_{15}$ 7.09$\, \times\, 10^{-3}$ 4.70$\, \times\, 10^{-4}$ 5.00$\, \times\, 10^{-4}$ 1.20$\, \times\, 10^{-3}$ 9.70$\, \times\, 10^{-4}$ 5.37$\, \times\, 10^{-4}$ 5.33$\, \times\, 10^{-4}$ 3.81$\, \times\, 10^{-4 }$ 算法排序 16 4 5 14 13 7 6 3 $f_{16}$ $-$1.03$\, \times\, 10^{0}$ $-$1.03$\, \times\, 10^{0}$ $-$1.03$\, \times\, 10^{0}$ $-$1.03$\, \times\, 10^{0}$ $-$1.03$\, \times\, 10^{0}$ $-$1.02$\, \times\, 10^{0}$ $-$4.93$\, \times\, 10^{-1}$ $-$1.02$\, \times\, 10^{0 }$ 算法排序 11 9 9 4 4 12 14 13 $f_{17}$ 4.04$\, \times\, 10^{-1}$ 3.98$\, \times\, 10^{-1}$ 3.98$\, \times\, 10^{-1}$ 3.98$\, \times\, 10^{-1}$ 3.98$\, \times\, 10^{-1}$ 4.00$\, \times\, 10^{-1}$ 5.56$\, \times\, 10^{1}$ 4.04$\, \times\, 10^{-1 }$ 算法排序 13 7 7 7 7 12 16 13 $f_{18}$ 7.50$\, \times\, 10^{0}$ 3.00$\, \times\, 10^{0}$ 3.02$\, \times\, 10^{0}$ 3.00$\, \times\, 10^{0}$ 3.00$\, \times\, 10^{0}$ 3.48$\, \times\, 10^{0}$ 8.67$\, \times\, 10^{0}$ 3.01$\, \times\, 10^{0 }$ 算法排序 15 2 13 2 2 14 16 11 $f_{19}$ $-$3.86$\, \times\, 10^{0}$ $-$3.86$\, \times\, 10^{0}$ $-$3.86$\, \times\, 10^{0}$ $-$3.86$\, \times\, 10^{0}$ $-$3.86$\, \times\, 10^{0}$ $-$3.86$\, \times\, 10^{0}$ $-$3.60$\, \times\, 10^{0}$ $-$3.86$\, \times\, 10^{0 }$ 算法排序 7 9 9 9 9 8 15 13 $f_{20}$ $-$3.26$\, \times\, 10^{0}$ $-$3.28$\, \times\, 10^{0}$ $-$3.27$\, \times\, 10^{0}$ $-$3.24$\, \times\, 10^{0}$ $-$3.23$\, \times\, 10^{0}$ $-$3.32$\, \times\, 10^{0}$ $-$1.98$\, \times\, 10^{-1}$ $-$3.18$\, \times\, 10^{0 }$ 算法排序 10 7 8 11 12 4 15 13 $f_{21}$ $-$5.17$\, \times\, 10^{0}$ $-$6.86$\, \times\, 10^{0}$ $-$5.52$\, \times\, 10^{0}$ $-$6.96$\, \times\, 10^{0}$ $-$5.54$\, \times\, 10^{0}$ $-$8.74$\, \times\, 10^{0}$ $-$7.48$\, \times\, 10^{-1}$ $-$7.54$\, \times\, 10^{0 }$ 算法排序 14 8 12 7 11 4 15 5 $f_{22}$ $-$5.44$\, \times\, 10^{0}$ $-$8.27$\, \times\, 10^{0}$ $-$5.52$\, \times\, 10^{0}$ $-$8.31$\, \times\, 10^{0}$ $-$6.76$\, \times\, 10^{0}$ $-$9.20$\, \times\, 10^{0}$ $-$9.47$\, \times\, 10^{-1}$ $-$8.36$\, \times\, 10^{0 }$ 算法排序 14 8 13 7 11 5 15 6 $f_{23}$ $-$4.91$\, \times\, 10^{0}$ $-$9.10$\, \times\, 10^{0}$ $-$6.57$\, \times\, 10^{0}$ $-$8.50$\, \times\, 10^{0}$ $-$7.63$\, \times\, 10^{0}$ $-$9.23$\, \times\, 10^{0}$ $-$1.13$\, \times\, 10^{0}$ $-$8.94$\, \times\, 10^{0 }$ 算法排序 14 7 13 9 10 6 15 8 Friedman排序 11.957 9.304 7.739 9.522 7.609 7.13 12.522 8.087 总排序 14 12 8 13 7 5 15 9 表 7 FECO算法与其他启发式算法的比较(2)
Table 7 Comparison between FECO and other heuristic algorithms (2)
GSO GSA NFESA RCBBO RCCRO GWO WOA FECO $f_1$ 1.95$\, \times\, 10^{-8}$ 2.53$\, \times\, 10^{-16}$ 8.10$\, \times\, 10^{2}$ 1.39$\, \times\, 10^{-3}$ 6.43$\, \times\, 10^{-7}$ 6.59$\, \times\, 10^{-28}$ 1.41$\, \times\, 10^{-30}$ 3.22$\, \times\, 10^{-23}$ 算法排序 7 6 16 14 8 4 3 5 $f_2$ 3.70$\, \times\, 10^{-5}$ 5.57$\, \times\, 10^{-2}$ 4.07$\, \times\, 10^{0}$ 7.99$\, \times\, 10^{-2}$ 2.20$\, \times\, 10^{-3}$ 7.18$\, \times\, 10^{-17}$ 1.06$\, \times\, 10^{-21}$ 3.18$\, \times\, 10^{-16}$ 算法排序 5 11 15 13 7 3 2 4 $f_3$ 5.78$\, \times\, 10^{0}$ 8.97$\, \times\, 10^{2}$ 1.79$\, \times\, 10^{-6}$ 2.27$\, \times\, 10^{1}$ 2.97$\, \times\, 10^{-7}$ 3.29$\, \times\, 10^{-6}$ 5.36$\, \times\, 10^{-7}$ 1.47$\, \times\, 10^{2 }$ 算法排序 11 14 4 12 2 5 3 13 $f_4$ 1.08$\, \times\, 10^{-1}$ 7.35$\, \times\, 10^{0}$ 5.11$\, \times\, 10^{1}$ 3.09$\, \times\, 10^{-2}$ 9.32$\, \times\, 10^{-3}$ 5.61$\, \times\, 10^{-7}$ 7.26$\, \times\, 10^{-2}$ 4.22$\, \times\, 10^{-1}$ 算法排序 6 13 16 4 3 1 5 10 $f_5$ 4.98$\, \times\, 10^{1}$ 6.75$\, \times\, 10^{1}$ 1.81$\, \times\, 10^{6}$ 5.54$\, \times\, 10^{1}$ 2.71$\, \times\, 10^{1}$ 2.68$\, \times\, 10^{1}$ 2.79$\, \times\, 10^{1}$ 5.29$\, \times\, 10^{1}$ 算法排序 10 13 16 12 6 5 7 11 $f_6$ 1.60$\, \times\, 10^{-2}$ 2.50$\, \times\, 10^{-16}$ 4.51$\, \times\, 10^{-1}$ 0.00$\, \times\, 10^{0}$ 0.00$\, \times\, 10^{0}$ 8.17$\, \times\, 10^{-1}$ 3.12$\, \times\, 10^{0}$ 0.00$\, \times\, 10^{0}$ 算法排序 8 7 10 1 1 11 12 1 $f_7$ 7.38$\, \times\, 10^{-2}$ 8.94$\, \times\, 10^{-2}$ 3.86$\, \times\, 10^{-1}$ 1.75$\, \times\, 10^{-2}$ 5.41$\, \times\, 10^{-3}$ 2.21$\, \times\, 10^{-3}$ 1.43$\, \times\, 10^{-3}$ 1.27$\, \times\, 10^{-2}$ 算法排序 12 13 15 8 3 2 1 7 $f_8$ $-$1.26$\, \times\, 10^{4}$ $-$2.82$\, \times\, 10^{3}$ 7.35$\, \times\, 10^{3}$ $-$1.26$\, \times\, 10^{4}$ $-$1.26$\, \times\, 10^{4}$ $-$6.12$\, \times\, 10^{3}$ $-$5.08$\, \times\, 10^{3}$ $-$1.15$\, \times\, 10^{4}$ 算法排序 1 14 16 2 2 12 13 8 $f_9$ 1.02$\, \times\, 10^{0}$ 2.60$\, \times\, 10^{1}$ 2.12$\, \times\, 10^{2}$ 2.62$\, \times\, 10^{-2}$ 9.08$\, \times\, 10^{-4}$ 3.11$\, \times\, 10^{-1}$ 0.00$\, \times\, 10^{0}$ 1.23$\, \times\, 10^{1}$ 算法排序 9 12 16 4 3 7 1 10 $f_{10}$ 2.65$\, \times\, 10^{-5}$ 6.21$\, \times\, 10^{-2}$ 1.67$\, \times\, 10^{1}$ 2.51$\, \times\, 10^{-2}$ 1.94$\, \times\, 10^{-3}$ 1.06$\, \times\, 10^{-13}$ 7.40$\, \times\, 10^{0}$ 1.53$\, \times\, 10^{-12}$ 算法排序 3 10 16 9 6 1 12 2 $f_{11}$ 3.08$\, \times\, 10^{-2}$ 2.77$\, \times\, 10^{1}$ 5.67$\, \times\, 10^{0}$ 8.49$\, \times\, 10^{-2}$ 1.12$\, \times\, 10^{-2}$ 4.49$\, \times\, 10^{-3}$ 2.89$\, \times\, 10^{-4}$ 6.10$\, \times\, 10^{-4}$ 算法排序 8 16 15 10 5 4 2 3 $f_{12}$ 2.76$\, \times\, 10^{-11}$ 1.80$\, \times\, 10^{0}$ 4.43$\, \times\, 10^{5}$ 3.28$\, \times\, 10^{-5}$ 2.07$\, \times\, 10^{-2}$ 5.34$\, \times\, 10^{-2}$ 3.40$\, \times\, 10^{-1}$ 4.07$\, \times\, 10^{-3}$ 算法排序 1 14 16 4 6 10 11 5 $f_{13}$ 4.69$\, \times\, 10^{-5}$ 8.89$\, \times\, 10^{0}$ 3.95$\, \times\, 10^{6}$ 3.72$\, \times\, 10^{-4}$ 7.05$\, \times\, 10^{-7}$ 6.54$\, \times\, 10^{-1}$ 1.89$\, \times\, 10^{0}$ 5.95$\, \times\, 10^{-2 }$ 算法排序 3 14 16 6 1 10 13 8 $f_{14}$ 9.98$\, \times\, 10^{-1}$ 5.86$\, \times\, 10^{0}$ 9.98$\, \times\, 10^{-1}$ 9.98$\, \times\, 10^{-1}$ 9.98$\, \times\, 10^{-1}$ 4.04$\, \times\, 10^{0}$ 2.11$\, \times\, 10^{0}$ 1.02$\, \times\, 10^{0 }$ 算法排序 1 15 4 3 1 14 12 6 $f_{15}$ 3.77$\, \times\, 10^{-4}$ 3.67$\, \times\, 10^{-3}$ 7.89$\, \times\, 10^{-4}$ 7.86$\, \times\, 10^{-4}$ 5.56$\, \times\, 10^{-4}$ 3.37$\, \times\, 10^{-4}$ 5.72$\, \times\, 10^{-4}$ 5.65$\, \times\, 10^{-4}$ 算法排序 2 15 12 11 8 1 10 9 $f_{16}$ $-$1.03$\, \times\, 10^{0}$ $-$1.03$\, \times\, 10^{0}$ 1.06$\, \times\, 10^{0}$ $-$1.03$\, \times\, 10^{0}$ $-$1.03$\, \times\, 10^{0}$ 1.03$\, \times\, 10^{0}$ $-$1.03$\, \times\, 10^{0}$ $-$1.03$\, \times\, 10^{0}$ 算法排序 3 1 16 7 4 15 1 8 $f_{17}$ 3.98$\, \times\, 10^{-1}$ 3.98$\, \times\, 10^{-1}$ 4.24$\, \times\, 10^{-1}$ 3.98$\, \times\, 10^{-1}$ 3.98$\, \times\, 10^{-1}$ 3.98$\, \times\, 10^{-1}$ 3.98$\, \times\, 10^{-1}$ 3.98$\, \times\, 10^{-1}$ 算法排序 4 1 15 11 4 3 6 2 $f_{18}$ 3.00$\, \times\, 10^{0}$ 3.00$\, \times\, 10^{0}$ 3.00$\, \times\, 10^{0}$ 3.01$\, \times\, 10^{0}$ 3.00$\, \times\, 10^{0}$ 3.00$\, \times\, 10^{0}$ 3.00$\, \times\, 10^{0}$ 3.00$\, \times\, 10^{0}$ 算法排序 2 2 9 12 10 8 2 1 $f_{19}$ $-$3.86$\, \times\, 10^{0}$ $-$3.86$\, \times\, 10^{0}$ 1.47$\, \times\, 10^{-1}$ $-$3.86$\, \times\, 10^{0}$ $-$3.86$\, \times\, 10^{0}$ $-$3.86$\, \times\, 10^{0}$ $-$3.86$\, \times\, 10^{0}$ $-$3.86$\, \times\, 10^{0 }$ 算法排序 2 4 16 6 1 5 14 3 $f_{20}$ $-$3.27$\, \times\, 10^{0}$ $-$3.32$\, \times\, 10^{0}$ 9.34$\, \times\, 10^{-1}$ $-$3.32$\, \times\, 10^{0}$ $-$3.32$\, \times\, 10^{0}$ $-$3.29$\, \times\, 10^{0}$ $-$2.98$\, \times\, 10^{0}$ $-$3.30$\, \times\, 10^{0}$ 算法排序 9 2 16 3 1 6 14 5 $f_{21}$ $-$6.09$\, \times\, 10^{0}$ $-$5.96$\, \times\, 10^{0}$ 6.80$\, \times\, 10^{0}$ $-$5.51$\, \times\, 10^{0}$ $-$1.01$\, \times\, 10^{1}$ $-$1.02$\, \times\, 10^{1}$ $-$7.05$\, \times\, 10^{0}$ $-$1.00$\, \times\, 10^{1}$ 算法排序 9 10 16 13 2 1 6 3 $f_{22}$ $-$6.55$\, \times\, 10^{0}$ $-$9.68$\, \times\, 10^{0}$ 6.85$\, \times\, 10^{0}$ $-$6.80$\, \times\, 10^{0}$ $-$1.04$\, \times\, 10^{1}$ $-$1.04$\, \times\, 10^{1}$ $-$8.18$\, \times\, 10^{0}$ $-$9.99$\, \times\, 10^{0}$ 算法排序 12 4 16 10 2 1 9 3 $f_{23}$ $-$7.40$\, \times\, 10^{0}$ $-$1.05$\, \times\, 10^{1}$ 6.81$\, \times\, 10^{0}$ $-$7.28$\, \times\, 10^{0}$ $-$1.05$\, \times\, 10^{1}$ $-$1.05$\, \times\, 10^{1}$ $-$9.34$\, \times\, 10^{0}$ $-$1.03$\, \times\, 10^{1}$ 算法排序 11 1 16 12 3 2 5 4 Friedman排序 6.043 9.217 14.043 8.13 3.87 5.696 7.13 5.696 总排序 4 11 16 10 1 2 5 2 表 8 FECO算法与其他启发式算法对于CEC2015测试函数的比较
Table 8 Comparison between FECO and other heuristic algorithms for CEC2015 functions
Function CCLSHADE ICMLSP PSO NFESA FECO $f_{CEC15\_1}$ 2.28$\, \times\, 10^{-14}~(-)$ 1.03$\, \times\, 10^{-13}~(-)$ 4.70$\, \times\, 10^{6}~(+)$ 3.87$\, \times\, 10^{8}~(+)$ 3.31$\, \times\, 10^{6}$ $f_{CEC15\_2}$ 5.07$\, \times\, 10^{-14}~(-)$ 4.05$\, \times\, 10^{-5}~(-)$ 5.94$\, \times\, 10^{3 }~(\sim)$ 2.62$\, \times\, 10^{10}~(+)$ 5.97$\, \times\, 10^{3}$ $f_{CEC15\_3}$ 2.02$\, \times\, 10^{1}~(+)$ 2.00$\, \times\, 10^{1}~(-)$ 2.09$\, \times\, 10^{1}~(+)$ 2.09$\, \times\, 10^{1}~(+)$ 2.01$\, \times\, 10^{1}$ $f_{CEC15\_4}$ 4.92$\, \times\, 10^{0}~(-)$ 2.31$\, \times\, 10^{2}~(+)$ 5.63$\, \times\, 10^{1}~(+)$ 3.15$\, \times\, 10^{2}~(+)$ 4.70$\, \times\, 10^{1 }$ $f_{CEC15\_5}$ 3.00$\, \times\, 10^{2}~(-)$ 4.03$\, \times\, 10^{3}~(+)$ 2.74$\, \times\, 10^{3}~(+)$ 7.08$\, \times\, 10^{3}~(+)$ 1.81$\, \times\, 10^{3 }$ $f_{CEC15\_6}$ 8.17$\, \times\, 10^{1}~(-)$ 1.47$\, \times\, 10^{3}~(-)$ 3.64$\, \times\, 10^{5}~(+)$ 7.72$\, \times\, 10^{6}~(+)$ 3.19$\, \times\, 10^{5 }$ $f_{CEC15\_7}$ 1.50$\, \times\, 10^{0}~(-)$ 2.07$\, \times\, 10^{1}~(+)$ 9.90$\, \times\, 10^{0} ~ (\sim)$ 1.24$\, \times\, 10^{2}~(+)$ 9.40$\, \times\, 10^{0 }$ $f_{CEC15\_8}$ 1.58$\, \times\, 10^{1}~(-)$ 9.42$\, \times\, 10^{2}~(-)$ 1.52$\, \times\, 10^{5}~(+)$ 1.77$\, \times\, 10^{6}~(+)$ 9.43$\, \times\, 10^{4 }$ $f_{CEC15\_9}$ 1.03$\, \times\, 10^{2}~(\sim)$ 1.63$\, \times\, 10^{2}~(+)$ 1.03$\, \times\, 10^{2 } ~ (\sim)$ 2.22$\, \times\, 10^{2}~(+)$ 1.03$\, \times\, 10^{2}$ $f_{CEC15\_10}$ 6.06$\, \times\, 10^{2}~(-)$ 1.43$\, \times\, 10^{3}~(-)$ 1.11$\, \times\, 10^{5}~(-)$ 9.96$\, \times\, 10^{6}~(+)$ 2.93$\, \times\, 10^{5 }$ $f_{CEC15\_11}$ 4.01$\, \times\, 10^{2}~(-)$ 1.12$\, \times\, 10^{3}~(+)$ 6.26$\, \times\, 10^{2}~(+)$ 8.82$\, \times\, 10^{2}~(+)$ 5.29$\, \times\, 10^{2 }$ $f_{CEC15\_12}$ 1.04$\, \times\, 10^{2}~(-)$ 1.61$\, \times\, 10^{2}~(+)$ 1.17$\, \times\, 10^{2}~(+)$ 1.55$\, \times\, 10^{2}~(+)$ 1.06$\, \times\, 10^{2 }$ $f_{CEC15\_13}$ 2.60$\, \times\, 10^{-2}~(-)$ 8.53$\times 10^{-2}~(+)$ 8.90$\, \times\, 10^{-2}~(+)$ 6.49$\times 10^{0}~(+)$ 2.65$\, \times\, 10^{-2 }$ $f_{CEC15\_14}$ 3.28$\, \times\, 10^{4}~(-)$ 4.21$\, \times\, 10^{4}~(+)$ 3.51$\, \times\, 10^{4}~(+)$ 5.52$\, \times\, 10^{4}~(+)$ 3.36$\, \times\, 10^{4 }$ $f_{CEC15\_15}$ 1.00$\, \times\, 10^{2}~(-)$ 1.27$\, \times\, 10^{2}~(+)$ 1.00$\, \times\, 10^{2}~(-)$ 6.28$\, \times\, 10^{3}~(+)$ 1.00$\, \times\, 10^{2}$ -
[1] Kirkpatrick S, Gelatt C D Jr, Vecchi M P. Optimization by simulated annealing. Science, 1983, 220(4598): 671-680 doi: 10.1126/science.220.4598.671 [2] Goldberg D E. Genetic Algorithms in Search, Optimization, and Machine Learning. Reading, MA: Addison-Wesley, 1989. [3] Dorigo M, Stützle T. Ant Colony Optimization. Cambridge, MA: MIT Press, 2004. [4] Kennedy J, Eberhart R C. Swarm Intelligence. San Francisco, CA: Morgan Kaufmann, 2001. [5] Karaboga D, Basturk B. A powerful and efficient algorithm for numerical function optimization: Artificial bee colony (ABC) algorithm. Journal of Global Optimization, 2007, 39(3): 459-471 doi: 10.1007/s10898-007-9149-x [6] Yang X S. Firefly algorithm, stochastic test functions and design optimisation. International Journal of Bio-Inspired Computation, 2010, 2(2): 78-84 doi: 10.1504/IJBIC.2010.032124 [7] Mirjalili S, Mirjalili S M, Lewis A. Grey wolf optimizer. Advances in Engineering Software, 2014, 69: 46-61 doi: 10.1016/j.advengsoft.2013.12.007 [8] Wang G G, Deb S, Cui Z H. Monarch Butterfly Optimization, Neural Computing and Applications. New York, NY, USA: Springer, 2015. 1-20 [9] Mirjalili S, Lewis A. The whale optimization algorithm. Advances in Engineering Software, 2016, 95: 51-67 doi: 10.1016/j.advengsoft.2016.01.008 [10] 肖辉辉, 万常选, 段艳明, 谭黔林.基于引力搜索机制的花朵授粉算法.自动化学报, 2017, 43(4): 576-594 doi: 10.16383/j.aas.2017.c160146Xiao Hui-Hui, Wan Chang-Xuan, Duan Yan-Ming, Tan Qian-Lin. Flower pollination algorithm based on gravity search mechanism. Acta Automatica Sinica, 2017, 43(4): 576-594 doi: 10.16383/j.aas.2017.c160146 [11] Dhiman G, Kumar V. Spotted hyena optimizer: a novel bio-inspired based metaheuristic technique for engineering applications. Advances in Engineering Software, 2017, 114: 48-70 doi: 10.1016/j.advengsoft.2017.05.014 [12] Slowik A, Kwasnicka H. Nature inspired methods and their industry applications—swarm intelligence algorithms. IEEE Transactions on Industrial Informatics, 2018, 14(3): 1004-1015 doi: 10.1109/TII.2017.2786782 [13] 冯友兰.中国哲学简史.北京:新世界出版社, 2004.Feng You-Lan. A Brief History of Chinese Philosophy. Beijing: New World Press, 2004. [14] Tam S C, Tam H K, Tam L M, Zhang T. A new optimization method, the algorithm of changes, for Bin Packing Problem. In: Proceedings of the IEEE 5th International Conference on Bio-Inspired Computing: Theories and Applications. Changsha, China: IEEE, 2010. 994-999 [15] Zhao R. Survivable topology design of hybrid fiber-VDSL access networks with a novel metaheuristic. In: Proceedings of the 5th Advanced International Conference on Telecommunications. Venice/Mestre, Italy, 2009. [16] Cui Y H, Guo R K, Guo D. A naïve five-element string algorithm. Journal of Software, 2009, 4(9): 925-934 http://d.old.wanfangdata.com.cn/OAPaper/oai_doaj-articles_321e5ca99cad37eaa2938d505e255ee4 [17] Punnathanam V, Kotecha P. Yin-Yang-pair Optimization: a novel lightweight optimization algorithm. Engineering Applications of Artificial Intelligence, 2016, 54: 62-79 doi: 10.1016/j.engappai.2016.04.004 [18] Liu M D. Five-elements cycle optimization algorithm for the travelling salesman problem. In: Proceedings of the 18th International Conference on Advanced Robotics (ICAR). Hong Kong, China, 2017. [19] Liu M D. Five-elements cycle optimization algorithm for solving continuous optimization problems. In: Proceedings of the IEEE 4th International Conference on Soft Computing & Machine Intelligence (ISCMI). Mauritius: IEEE, 2017. 75-79 [20] Yao X, Liu Y, Lin G M. Evolutionary programming made faster. IEEE Transactions on Evolutionary Computation, 1999, 3(2): 82-102 doi: 10.1109/4235.771163 [21] Derrac J, García S, Molina D, Herrera F. A practical tutorial on the use of nonparametric statistical tests as a methodology for comparing evolutionary and swarm intelligence algorithms. Swarm and Evolutionary Computation, 2011, 1(1): 3-18 [22] Yao X, Liu Y. Fast evolution strategies. In: Proceedings of the 6th International Conference on Evolutionary Programming VI. Berlin: Springer, 1997. 151-162 [23] Storn R, Price K. Differential evolution——a simple and efficient heuristic for global optimization over continuous spaces. Journal of Global Optimization, 1997, 11(4): 341-359 doi: 10.1023/A:1008202821328 [24] Deb K, Anand A, Joshi D. A computationally efficient evolutionary algorithm for real-parameter optimization. Evolutionary Computation, 2002, 10(4): 371-395 doi: 10.1162/106365602760972767 [25] He S, Wu Q H, Saunders J R. Group search optimizer: an optimization algorithm inspired by animal searching behavior. IEEE Transactions on Evolutionary Computation, 2009, 13(5): 973-990 doi: 10.1109/TEVC.2009.2011992 [26] Rashedi E, Nezamabadi-Pour H, Saryazdi S. GSA: a gravitational search algorithm. Information Sciences, 2009, 179(13): 2232-2248 doi: 10.1016/j.ins.2009.03.004 [27] Gong W Y, Cai Z H, Ling C X, Li H. A real-coded biogeography-based optimization with mutation. Applied Mathematics and Computation, 2010, 216(9): 2749-2758 doi: 10.1016/j.amc.2010.03.123 [28] Lam A Y S, Li V O K, Yu J J Q. Real-coded chemical reaction optimization. IEEE Transactions on Evolutionary Computation, 2012, 16(3): 339-353 doi: 10.1109/TEVC.2011.2161091 [29] Liang J J, Qu B Y, Suganthan P N, Chen Q. Problem Definitions and Evaluation Criteria for the CEC 2015 Competition on Learning-based Real-Parameter Single Objective Optimization, Technical Report, Computational Intelligence Laboratory, Zhengzhou University, Zhengzhou, China and Technical Report, Nanyang Technological University, Singapore, 2014. [30] El-Abd M. Cooperative co-evolution using LSHADE with restarts for the CEC15 benchmarks. In: Proceedings of the 2016 IEEE Congress on Evolutionary Computation (CEC). Vancouver, Canada: IEEE, 2016. 4810-4814 [31] Chen L, Peng C D, Liu H L, Xie S L. An improved covariance matrix leaning and searching preference algorithm for solving CEC 2015 benchmark problems. In: Proceedings of the 2015 IEEE Congress on Evolutionary Computation (CEC). Sendai, Japan: IEEE, 2015. 1041-1045