2.845

2023影响因子

(CJCR)

  • 中文核心
  • EI
  • 中国科技核心
  • Scopus
  • CSCD
  • 英国科学文摘

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

逐步求精的多视角点云配准方法

徐思雨 祝继华 田智强 李垚辰 庞善民

徐思雨, 祝继华, 田智强, 李垚辰, 庞善民. 逐步求精的多视角点云配准方法. 自动化学报, 2019, 45(8): 1486-1494. doi: 10.16383/j.aas.c170556
引用本文: 徐思雨, 祝继华, 田智强, 李垚辰, 庞善民. 逐步求精的多视角点云配准方法. 自动化学报, 2019, 45(8): 1486-1494. doi: 10.16383/j.aas.c170556
XU Si-Yu, ZHU Ji-Hua, TIAN Zhi-Qiang, LI Yao-Chen, PANG Shan-Min. Stepwise Refinement Approach for Registration of Multi-view Point Sets. ACTA AUTOMATICA SINICA, 2019, 45(8): 1486-1494. doi: 10.16383/j.aas.c170556
Citation: XU Si-Yu, ZHU Ji-Hua, TIAN Zhi-Qiang, LI Yao-Chen, PANG Shan-Min. Stepwise Refinement Approach for Registration of Multi-view Point Sets. ACTA AUTOMATICA SINICA, 2019, 45(8): 1486-1494. doi: 10.16383/j.aas.c170556

逐步求精的多视角点云配准方法

doi: 10.16383/j.aas.c170556
基金项目: 

国家自然科学基金 61573273

轨道交通工程信息化国家重点实验室(中铁一院)开放研究课题 SKLK16-0

详细信息
    作者简介:

    徐思雨  西安交通大学软件学院硕士研究生.主要研究方向为计算机视觉与机器学习.E-mail:xsy_xjtu@163.com

    田智强  西安交通大学软件学院副教授.主要研究方向为计算机视觉和机器学习.E-mail:zhiqiangtian@xjtu.edu.cn

    李垚辰   西安交通大学软件学院讲师.主要研究方向为计算机视觉和模式识别.E-mail:yaochenli@xjtu.edu.cn

    庞善民  西安交通大学软件学院副教授.主要研究方向为计算机视觉, 模式识别和图像处理.E-mail:pangsm@xjtu.edu.cn

    通讯作者:

    祝继华   西安交通大学软件学院副教授.2011年获得西安交通大学模式识别与智能系统博士学位.主要研究方向为计算机视觉, 移动机器人与机器学习.本文通信作者.E-mail:zhujh@xjtu.edu.cn

Stepwise Refinement Approach for Registration of Multi-view Point Sets

Funds: 

National Natural Science Foundation of China 61573273

State Key Laboratory of Rail Transit Engineering Informatization (FSDI) SKLK16-0

More Information
    Author Bio:

    Master student at the School of Software Engineering, Xi'an Jiaotong University. Her research interest covers computer vision and machine learning

    Associate professor at the School of Software Engineering, Xi'an Jiaotong University. His research interest covers computer vision and machine learning

    Lecturer at the School of Software Engineering, Xi'an Jiaotong University. His research interest covers computer vision and pattern recognition

    Associate professor at the School of Software Engineering, Xi'an Jiaotong University. His research interest covers computer vision, pattern recognition, and image processing

    Corresponding author: ZHU Ji-Hua Associate professor at the State Key Laboratory of Rail Transit Engineering Informatization (FSDI), and the School of Software Engineering, Xi'an Jiaotong University. He received the Ph. D. degree in pattern recognition and intelligent system from Xi'an Jiaotong University in 2011. His research interest covers computer vision, mobile robots, and machine learning. Corresponding author of this paper
  • 摘要: 针对多视角点云配准问题,本文设计了一个合理的目标函数,便于将多视角配准问题分解成多个双视角配准问题,并考虑了两个要素:1)各帧点云均具有其他所有点云所未覆盖的区域;2)基准帧点云的重要程度高于其他点云.为了求解该目标函数,本文提出了逐步求精的解决策略:根据给定的配准初值构造初始模型,依次取出基准帧以外的每帧点云,利用所提出的双视角配准算法计算该帧点云的配准参数,并修正模型,以便进一步计算后续点云的配准参数.遍历完全部点云构成一次完整的循环,多次循环后可获得精确的多视角配准结果.公开数据集上的实验结果表明,本文所提出的方法能够精确、可靠地实现多视角点云配准.
    1)  本文责任编委 黄庆明
  • 图  1  从兔子模型上采集得到的多视角点云

    Fig.  1  Multi-view point sets acquired from the Bunny model

    图  2  逐步求精的多视角点云配准方法原理图

    Fig.  2  The framework of stepwise refinement approach for the registration of multi-view point sets

    图  3  逐步求精的多视角点云配准方法原理图

    Fig.  3  The framework of stepwise refinement approach for the registration of multi-view point sets

    图  4  不同噪声水平下的各多视角点云配准方法对比结果

    Fig.  4  Comparison results of competed approaches under different noise levels

    图  5  基于多视角点云配准方法的三维场景重建结果

    Fig.  5  3D reconstructed result of scene based on the multi-view registration approach

    表  1  复杂度分析结果

    Table  1  Complexity analysis results

    操作 计算复杂度 执行次数
    构造不完整模型 O$(M_i)$ 1
    创建$k$-d树 O$({M{'}}\lg {M{'}})$ 1
    建立点对关系 O$({M_{i}}\lg {M{'}})$ $\le K$
    计算权重 O$({M_{i}})$ $\le K$
    计算刚体变换 O$({M_{i}})$ $\le K$
    更新模型 O$(M_i)$ 1
    下载: 导出CSV

    表  2  测试数据集的基本信息

    Table  2  The basic information of testing datasets

    Armadillo Buddha Bunny Dragon
    点云帧数 12 15 10 15
    总点数 307 625 1 099 005 362 272 469 193
    下载: 导出CSV

    表  3  各种逐步求精策略的配准结果

    Table  3  Registration results of different stepwise refinements

    数据集 初始 SRICP SRbICP SReICP SRwICP
    ${e_{{R}}}$ ${e_{ t}}$ ${e_{{R}}}$ ${e_{ t}}$ ${e_{{R}}}$ ${e_{ t}}$ ${e_{{R}}}$ ${e_{ t}}$ ${e_{{R}}}$ ${e_{ t}}$
    Bunny 0.0588 1.3296 0.0114 0.9066 0.0148 1.1977 0.0085 0.8186 0.0071 0.4539
    Dragon 0.0400 1.5015 0.0210 1.7705 0.0102 0.9778 0.0100 0.8231 0.0071 0.8042
    下载: 导出CSV

    表  4  不同多视角点云配准方法的实验对比结果

    Table  4  Results of different multi-view registration approaches

    数据集 初始 MA[20] LRS[21] 本文算法
    ${e_{{R}}}$ ${e_{ t}}$ ${e_{{R}}}$ ${e_{ t}}$ 时间(min) ${e_{{R}}}$ ${e_{ t}}$ 时间(min) ${e_{{R}}}$ ${e_{ t}}$ 时间(min)
    Armadillo 0.0509 0.9856 0.0318 1.8868 0.1811 0.0188 3.0913 0.3290 0.0039 0.9247 0.7000
    Buddha 0.0382 1.4313 0.0127 0.9337 0.6772 0.0102 0.8960 1.7947 0.0066 0.9834 3.9372
    Bunny 0.0588 1.3296 0.0110 0.6797 0.1896 0.0116 0.9009 0.6883 0.0071 0.4539 0.5684
    Dragon 0.0400 1.5015 0.0170 1.1386 0.2446 0.0244 1.5335 0.4572 0.0071 0.8042 0.2930
    下载: 导出CSV
  • [1] Yang J L, Li H D, Campbell D, Jia Y D. Go-ICP:a globally optimal solution to 3D ICP point-set registration. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2016, 38(11):2241-2254 doi: 10.1109/TPAMI.2015.2513405
    [2] Zhou Q Y, Park J, Koltun P. Fast global registration. In: Proceedings of the 2006 European Conference on Computer Vision. Amsterdam, the Netherlands: Springer, 2016.766-782
    [3] 祝继华, 周颐, 王晓春, 邗汶锌, 马亮.基于图像配准的栅格地图拼接方法.自动化学报, 2015, 41(2):285-294 http://www.aas.net.cn/CN/abstract/abstract18607.shtml

    Zhu Ji-Hua, Zhou Yi, Wang Xiao-Chun, Han Wen-Xin, Ma Liang. Grid map merging approach based on image registration. Acta Automatica Sinica, 2015, 41(2):285-294 http://www.aas.net.cn/CN/abstract/abstract18607.shtml
    [4] Ahuja S, Iles P, Waslander S L. Three-dimensional scan registration using curvelet features in planetary environments. Journal of Field Robotics, 2016, 33(2):243-259 doi: 10.1002/rob.21616
    [5] 伍龙华, 黄惠.点云驱动的计算机图形学综述.计算机辅助设计与图形学学报, 2015, 27(8):1341-1353 doi: 10.3969/j.issn.1003-9775.2015.08.001

    Wu Long-Hua, Huang Hui. Survey on points-driven computer graphics. Journal of Computer-Aided Design and Computer Graphics, 2015, 27(8):1341-1353 doi: 10.3969/j.issn.1003-9775.2015.08.001
    [6] Dai A, Niebetaner M, Zollhöfer M, Izadi S, Theobalt C. Real-time globally consistent 3D reconstruction using on-the-fly surface re-integration. ACM Transactions on Graphics, 2017, 36(3):Article No. 76a
    [7] Ying S H, Wu G R, Wang Q, Shen D G. Hierarchical unbiased graph shrinkage (HUGS):a novel groupwise registration for large data set. NeuroImage, 2014, 84(1):626-638 http://d.old.wanfangdata.com.cn/NSTLQK/NSTL_QKJJ0232335223/
    [8] Ying S H, Wu G R, Wang Q, Shen D G. Groupwise registration via graph shrinkage on the image manifold. In: Proceedings of the 2013 IEEE Conferences on Computer Vision and Pattern Recognition. Portland, USA: IEEE, 2013.25-27
    [9] Besl P J, McKay N D. A method for registration of 3-D shapes. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1992, 14(2):239-256 doi: 10.1109/34.121791
    [10] Chetverikov D, Stepanov D, Krsek P. Robust Euclidean alignment of 3D point sets:the trimmed iterative closest point algorithm. Image and Vision Computing, 2005, 23(3):299-309 doi: 10.1016/j.imavis.2004.05.007
    [11] Phillips J M, Liu R, Tomasi C. Outlier robust ICP for minimizing fractionalrmsd. In: Proceedings of the 6th International Conference on 3-D Digital Imaging and Modeling. Quebec, Canada: IEEE, 2007.427-434
    [12] Sandhu R, Dambreville S, Tannenbaum A. Point set registration via particle filtering and stochastic dynamics. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2010, 32(8):1459-1473 doi: 10.1109/TPAMI.2009.142
    [13] 祝继华, 杜少毅, 李钟毓, 马亮, 袁泽剑.基于粒子滤波的部分对应点集刚体配准算法.中国科学:信息科学, 2014, 44(7):886-899 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zgkx-fc201407005

    Zhu Ji-Hua, Du Shao-Yi, Li Zhong-Yu, Ma Liang, Yuan Ze-Jian. Rigid partially registration algorithm for point set with particle filter. Scientia Sinica Informationis, 2014, 44(7):886-899 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zgkx-fc201407005
    [14] Lomonosov E D, Chetverikov D, Ekárt A. Pre-registration of arbitrarily oriented 3D surfaces using a genetic algorithm. Pattern Recognition Letters, 2006, 27(11):1201-1208 doi: 10.1016/j.patrec.2005.07.018
    [15] Chen Y, Medioni G. Object modelling by registration of multiple range images. Image and Vision Computing, 1992, 10(3):145-155 doi: 10.1016/0262-8856(92)90066-C
    [16] Bergevin R, Soucy M, Gagnon H, Laurendeau D. Towards a general multi-view registration technique. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1996, 18(5):540-547 doi: 10.1109/34.494643
    [17] Mateo X, Orriols X, Binefa X. Bayesian perspective for the registration of multiple 3D views. Computer Vision and Image Understanding, 2014, 118:84-96 doi: 10.1016/j.cviu.2013.09.003
    [18] Evangelidis G D, Horaud R. Joint alignment of multiple point sets with batch and incremental expectation-maximization. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2018, 40(6):1397-1410 doi: 10.1109/TPAMI.2017.2717829
    [19] Tang Y Z, Feng J Q. Hierarchical multiview rigid registration. Computer Graphics Forum, 2015, 34(5):77-87 doi: 10.1111/cgf.12698
    [20] Govindu V M, Pooja A. On averaging multiview relations for 3D scan registration. IEEE Transactions on Image Processing, 2014, 23(3):1289-1302 doi: 10.1109/TIP.2013.2246517
    [21] Arrigoni F, Rossi B, Fusiello A. Global registration of 3D point sets via LRS decomposition. In: Proceedings of the 2016 European Conference on Computer Vision. Amsterdam, the Netherlands: Springer, 2016.489-504 doi: 10.1007/978-3-319-46493-0_30
    [22] Nuchter A, Lingemann K, Hertzberg J. Cached k-d tree search for ICP algorithms. In: Proceedings of the 6th International Conference on 3-D Digital Imaging and Modeling. Quebec, Canada: IEEE, 2007.419-426 http://ieeexplore.ieee.org/xpls/icp.jsp?arnumber=4296783
    [23] Zhu J H, Wang D, Bai X X, Lu H M, Jin C C, Li Z Y. Registration of point clouds based on the ratio of bidirectional distances. In: Proceedings of the 4th International Conference on 3D Vision. California, USA: IEEE, 2016.102-107 http://ieeexplore.ieee.org/document/7785082/
    [24] Levoy M. The Stanford 3D Scanning Repository[Online], available: http://graphics.stanford.edu/data/3Dscanrep/, August 19, 2014
  • 加载中
图(5) / 表(4)
计量
  • 文章访问数:  2497
  • HTML全文浏览量:  980
  • PDF下载量:  204
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-09-29
  • 录用日期:  2018-01-01
  • 刊出日期:  2019-08-20

目录

    /

    返回文章
    返回