2.845

2023影响因子

(CJCR)

  • 中文核心
  • EI
  • 中国科技核心
  • Scopus
  • CSCD
  • 英国科学文摘

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

复杂工业过程智能优化决策系统的现状与展望

丁进良 杨翠娥 陈远东 柴天佑

丁进良, 杨翠娥, 陈远东, 柴天佑. 复杂工业过程智能优化决策系统的现状与展望. 自动化学报, 2018, 44(11): 1931-1943. doi: 10.16383/j.aas.2018.c180550
引用本文: 丁进良, 杨翠娥, 陈远东, 柴天佑. 复杂工业过程智能优化决策系统的现状与展望. 自动化学报, 2018, 44(11): 1931-1943. doi: 10.16383/j.aas.2018.c180550
DING Jin-Liang, YANG Cui-E, CHEN Yuan-Dong, CHAI Tian-You. Research Progress and Prospects of Intelligent Optimization Decision Making in Complex Industrial Process. ACTA AUTOMATICA SINICA, 2018, 44(11): 1931-1943. doi: 10.16383/j.aas.2018.c180550
Citation: DING Jin-Liang, YANG Cui-E, CHEN Yuan-Dong, CHAI Tian-You. Research Progress and Prospects of Intelligent Optimization Decision Making in Complex Industrial Process. ACTA AUTOMATICA SINICA, 2018, 44(11): 1931-1943. doi: 10.16383/j.aas.2018.c180550

复杂工业过程智能优化决策系统的现状与展望

doi: 10.16383/j.aas.2018.c180550
基金项目: 

国家工信部智能制造专项项目 20171122-6

国家自然科学基金 61525302

国家自然科学基金 61590922

沈阳市双百工程项目 Y17-0-004

详细信息
    作者简介:

    杨翠娥  东北大学流程工业综合自动化国家重点实验室博士研究生.2016年获得东北大学信息科学与工程学院硕士学位.主要研究方向为计算智能及其应用.E-mail:cuieyang@outlook.com

    陈远东  东北大学流程工业自动化国家重点实验室博士研究生.主要研究方向为炼厂调度, 混合整数线性规划, 大规模优化算法.E-mail:cyd4999@126.com

    柴天佑  中国工程院院士, 东北大学教授, IEEEFellow, IFAC Fellow.1985年获得东北大学博士学位.主要研究方向为自适应控制, 智能解耦控制, 流程工业综台自动化理论、方法与技术.E-mail:tychai@mail.neu.edu.cn

    通讯作者:

    丁进良东北大学流程工业综合自动化国家重点实验室教授.主要研究方向为复杂工业过程的建模与运行优化控制, 计算智能及应用.本文通信作者.E-mail:jlding@mail.neu.edu.cn

Research Progress and Prospects of Intelligent Optimization Decision Making in Complex Industrial Process

Funds: 

the Project of Ministry of Industry and Information Technology of China 20171122-6

National Natural Science Foundation of China 61525302

National Natural Science Foundation of China 61590922

the Projects of Shenyang Y17-0-004

More Information
    Author Bio:

     Ph.D. candidate at the State Key Laboratory of Synthetical Automation for Process Industies, Northeastern University. She received her master degree from the College of Informdtion Science and Engineering, Northeastern University in 2016. Her research interest covers computational intelligence and its application

     Ph. D. candidate at the State Key Laboratory of Synthetical Automation for Process Industries, Northeastern University. His research interest covers refinery scheduling, mixed integer linear programming, and large-scale optimization algorithm

      Academician of Chinese Academy of Engineering, professor at Northeastern University, IEEE Fellow, IFAC Fellow. He received his Ph. D. degree from Northeastern University in 1985. His research interest covers adaptive control, intelligent decoupling control, and integrated automation theory, method and technology of industrial process

    Corresponding author: DING Jin-Liang  Professor at the State Key Laboratory of Synthetical Automation for Process Industies, Northeastern University. His research interest covers modeling and operation optimization control of complex industrial process, computational intelligence and its application. Corresponding author of this paper
  • 摘要: 流程工业是制造业的重要组成部分,是我国国民经济和社会发展的重要支柱产业.新一代信息技术和人工智能技术为流程工业的发展带来新的挑战和机遇.只有与流程工业的特点与目标密切结合,充分利用大数据,将人工智能、移动互联网、云计算、建模、控制与优化等信息技术与工业生产过程的物理资源紧密融合与协同,实现流程工业智能优化制造,才可能实现流程工业的跨越式发展.本文聚焦流程工业的复杂生产过程,从其智能优化决策系统的角度,描述了复杂工业过程优化决策系统的问题、回顾总结了复杂工业过程全流程优化决策系统的现状,分析了智能优化决策系统的必要性,提出了智能优化决策系统的发展目标及愿景,并对智能优化决策系统的下一步重点研究方向进行了展望.
    1)  本文责任编委 孙健
  • 图  1  复杂工业过程智能优化决策系统的结构示意图

    Fig.  1  Diagram of intelligent optimization decision making system for complex industrial process

  • [1] 柴天佑, 丁进良.流程工业智能优化制造.中国工程科学, 2018, DOI: 10.15302/J-SSCAE-2018.04.007

    Chai Tian-You, Ding Jin-Liang. Intelligent optimized manufacturing in process industry. Chinese Engineering Science. 2018, DOI: 10.15302/J-SSCAE-2018.04.007
    [2] 柴天佑, 丁进良, 桂卫华, 钱锋.大数据与制造流程知识自动化发展战略研究.北京:科学出版社, 2018.

    Chai Tian-You, Ding Jin-Liang, Gui Wei-Hua, Qian Feng. Research on the development strategy of knowledge automation of big data and manufacturing process. Beijing:Science Press, 2018.
    [3] 桂卫华, 王成红, 谢永芳, 宋苏, 孟庆峰, 丁进良.流程工业实现跨越式发展的必由之路.中国科学基金, 2015, 29(5):337-342 http://kns.cnki.net/KCMS/detail/detail.aspx?filename=ZKJJ201505005&dbname=CJFD&dbcode=CJFQ

    Gui Wei-Hua, Wang Cheng-Hong, Xie Yong-Fang, Song Su, Meng Qing-Feng, Ding Jin-Liang. The necessary way to realize great-leap-forward development of process industries. Bulletin of National Natural Science Foundation of China. 2015, 29(5):337-342 http://kns.cnki.net/KCMS/detail/detail.aspx?filename=ZKJJ201505005&dbname=CJFD&dbcode=CJFQ
    [4] Qian F, Zhong W, Du W. Fundamental theories and key technologies for smart and optimal manufacturing in the process industry. Engineering, 2017, 3(2):154-160 doi: 10.1016/J.ENG.2017.02.011
    [5] 柴天佑.生产制造全流程优化控制对控制与优化理论方法的挑战.自动化学报, 2009, 35(6):641-649 http://www.aas.net.cn/CN/abstract/abstract18090.shtml

    Chai Tian-You. The challenge of control and optimization theory method for production and manufacturing process optimization control. Acta Automatica Sinica, 2009, 35(6):641-649 http://www.aas.net.cn/CN/abstract/abstract18090.shtml
    [6] 柴天佑, 丁进良, 王宏, 苏春翌.复杂工业过程运行的混合智能优化控制方法.自动化学报, 2008, 34(5):505-515 http://www.aas.net.cn/CN/abstract/abstract13476.shtml

    Chai Tian-You, Ding Jin-Liang, Wang Hong, Su Chun-Yi. Hybrid intelligent optimization control for complex industrial processes. Acta Automatica Sinica, 2008, 34(5):505-515 http://www.aas.net.cn/CN/abstract/abstract13476.shtml
    [7] Young R E. Petroleum refining process control and realtime optimization. Control Systems IEEE, 1999, 26(6):73-83 http://ieeexplore.ieee.org/xpls/icp.jsp?arnumber=4019324
    [8] 丁进良.动态环境下选矿生产全流程运行指标优化决策方法研究[博士学位论文], 东北大学, 中国, 2012.

    Ding Jin-Liang. Study on optimization decision method of whole process operation index under dynamic environment[Ph. D. dissertation], Northeastern University, China, 2012.
    [9] 柴天佑, 丁进良, 徐泉, 岳恒.基于物联网的选矿制造执行系统技术.物联网学报, 2018, (01):1-16 http://www.cnki.com.cn/Article/CJFDTOTAL-WLWX201801001.htm

    Chai Tian-You, Ding Jin-Liang, Xu Quan, Yue Heng. Implementation system technology of mineral processing manufacturing based on Internet of things. Journal of Internet of Things, 2018, (01):1-16 http://www.cnki.com.cn/Article/CJFDTOTAL-WLWX201801001.htm
    [10] Chai T, Ding J, Yu G, Wang H. Integrated optimization for the automation systems of mineral processing. IEEE Transactions on Automation Science and Engineering, 2014, 11(4):965-982 doi: 10.1109/TASE.2014.2308576
    [11] 柴天佑.复杂工业过程运行优化与反馈控制.自动化学报, 2013, 39(11):1744-1757 http://www.aas.net.cn/CN/abstract/abstract18214.shtml

    Chai Tian-You. Operation optimization and feedback control of complex industrial processes. Acta Automatica Sinica, 2013, 39(11):1744-1757 http://www.aas.net.cn/CN/abstract/abstract18214.shtml
    [12] Mehmet M, Francis J. Doyle III. Real-time optimization of the pulp mill benchmark problem. Computers & Chemical Engineering, 2008, 32(4-5):789-804 http://www.sciencedirect.com/science/article/pii/S0098135407000646
    [13] 王越.不确定环境下生产计划和调度的研究[博士学位论文], 浙江大学, 中国, 2016.

    Wang Yue. Research on production planning and scheduling under uncertain environment[Ph. D. dissertation], Zhejiang University, China, 2016.
    [14] 侯艳.炼油厂原油处理短期生产计划调度优化[博士学位论文], 广东工业大学, 中国, 2016.

    Hou Yan. Optimization of short-term production scheduling for oil refinery[Ph. D. dissertation], Guangdong University of Technology, China, 2016.
    [15] 赵小强.炼厂生产调度问题研究[博士学位论文], 浙江大学, 中国, 2005.

    Zhao Xiao-Qiang. Research on refinery production scheduling problem[Ph. D. dissertation], Zhejiang University, China, 2005.
    [16] Velez S, Maravelias C T. Multiple and nonuniform time grids in discrete-time MIP models for chemical production scheduling. Computers & Chemical Engineering, 2013, 53(11):70-85. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=260c39cde3abd4fb8d102be40a1f4917
    [17] Bowman E H. The schedule-sequencing problem. Operations Research, 1959, 7(5):621-624 doi: 10.1287/opre.7.5.621
    [18] Manne A S. On the job-shop scheduling problem. Operations Research, 1960, 8(2):219-223 http://d.old.wanfangdata.com.cn/Periodical/jsjjczzxt201804007
    [19] Hussin S M, Hassan M Y. Coordination of short-term maintenance scheduling with hourly security-constrained unit commitment. In Proceedings of Power Engineering and Optimization Conference (PEOCO), 2014 IEEE 8th International. Langkawi, Malaysia. USA: IEEE, 2014. 73-78
    [20] Jia Z, Ierapetritou M. Efficient short-term scheduling of refinery operations based on a continuous time formulation. Computers & Chemical Engineering, 2004, 28(6):1001-1019. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=02576a3e73f9cf64c1e642899a8c7c70
    [21] Joly M, Moro L F L, Pinto J M. Planning and scheduling for petroleum refineries using mathematical programming. Brazilian Journal of Chemical Engineering, 2002, 19(2):207-228. doi: 10.1590/S0104-66322002000200008
    [22] Ezpeleta J, Colom J M, Martinez J. A Petri net based deadlock prevention policy for flexible manufacturing systems. IEEE Transactions on Robotics and Automation, 1995, Ⅱ(2):173-184. http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=370500
    [23] Lin F J, Fung R F, Wang Y C. Sliding mode and fuzzy control of toggle mechanism using PM synchronous servomotor drive. IEE Proceedings-Control Theory and Applications, 1997, 144(5):393-402. doi: 10.1049/ip-cta:19971357
    [24] Balduzzi F, Giua A, Seatzu C. Modelling and simulation of manufacturing systems with first-order hybrid Petri nets. International Journal of Production Research, 2001, 39(2):255-282. doi: 10.1080/00207540010004278
    [25] Champagnat R, Esteban P, Pingaud H, Valette, R. Petri net based modeling of hybrid systems. Computers in industry, 1998, 36(1-2):139-146. doi: 10.1016/S0166-3615(97)00109-7
    [26] Allam M, Alla H. Modeling and simulation of an electronic component manufacturing system using hybrid Petri nets. IEEE Transactions on Semiconductor Manufacturing, 1998, 11(3):374-383. doi: 10.1109/66.705372
    [27] Chien C F, Chen C H. Using genetic algorithms (GA) and a coloured timed Petri net (CTPN) for modelling the optimization-based schedule generator of a generic production scheduling system. International Journal of Production Research, 2007, 45(8):1763-1789 doi: 10.1080/00207540500380981
    [28] Sadrieh S A, Ghaeli M, Bahri P A, Lee P L. An integrated Petri net and GA based approach for scheduling of hybrid plants. Computers in Industry, 2007, 58(6):519-530. doi: 10.1016/j.compind.2006.12.001
    [29] 张劲松.基于受控混杂Petri网的连续过程生产调度建模及优化方法[博士学位论文], 山东大学, 中国, 2008.

    Zhang Jin-Song. Modeling and optimization of continuous process production scheduling based on controlled hybrid Petri net[Ph. D. dissertation], Shandong University, China, 2008.
    [30] 邬仲臻, 冯毅萍, 王继帅, 吴玉成, 荣冈.一种基于仿真的流程工业生产调度闭环优化方法.化工自动化及仪表, 2011, 38(04):369-374 doi: 10.3969/j.issn.1000-3932.2011.04.003

    Wu Zhong-Zhen, Feng Yi-Ping, Wang Ji-Shuai, Wu Yu-Cheng, Rong Gang. A simulation based process industry production scheduling closed-loop optimization method. Control and Instruments in Chemical Industry, 2011, 38(04):369-374 doi: 10.3969/j.issn.1000-3932.2011.04.003
    [31] 王伟达, 王伟, 刘文剑.基于仿真的生产计划与调度系统集成.计算机工程与设计, 2007(07):1626-1629 doi: 10.3969/j.issn.1000-7024.2007.07.044

    Wang Wei-Da, Wang Wei, Liu Wen-Jian. Integration of simulation based production planning and scheduling system. Computer Engineering and Design, 2007(07):1626-1629 doi: 10.3969/j.issn.1000-7024.2007.07.044
    [32] Chryssolouris G, Papakostas N, Mourtzis D. refinery short-term scheduling with tank farm, inventory and distillation management:an integrated simulation-based approach. European Journal of Operational Research, 2005, 166(3):812-827. doi: 10.1016/j.ejor.2004.03.046
    [33] 马文强, 杜子平, 李东坡.仿真优化在制造系统生产调度中的研究进展.现代制造工程, 2012, 15(03):10-14 doi: 10.3969/j.issn.1671-3133.2012.03.004

    Ma Wen-Qiang, Du Zi-Ping, Li Dong-Po. Research progress of simulation optimization in manufacturing system production scheduling. Modern Manufacturing Engineering, 2012, 15(03):10-14 doi: 10.3969/j.issn.1671-3133.2012.03.004
    [34] Baker C T, Dzielinski B P. Simulation of a simplified job shop. Management Science, 1960, 6(3):311-323. doi: 10.1287/mnsc.6.3.311
    [35] 黄辉, 柴天佑, 郑秉霖, 罗小川, 张红.面向铁钢对应的两级案例推理铁水动态调度系统.化工学报, 2010, 61(08):2021-2029 http://d.old.wanfangdata.com.cn/Periodical/hgxb201008024

    Huang Hui, Chai Tian-You, Zheng Bing-Lin, Luo Xiao-Chuan, Zhang Hong. The two-level case reasoning iron-water dynamic scheduling system for iron-oriented steel. Journal of Chemical Engineering, 2010, 61(08):2021-2029 http://d.old.wanfangdata.com.cn/Periodical/hgxb201008024
    [36] Al-Khayyal F, Gri-n P M, Smith N R. Solution of a largescale two-stage decision and scheduling problem using decomposition. European Journal of Operational Research, 2001, 132(2):453-465 doi: 10.1016/S0377-2217(00)00138-7
    [37] Chen C L, Chen C L. Bottleneck-based heuristics to minimize total tardiness for the flexible flow line with unrelated parallel machines. Computers & Industrial Engineering, 2009, 56(4):1393-1401 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=504737ce05903e87e3dca3a997979696
    [38] 战德臣, 陈伟, 王忠杰.基于启发式规则的混合遗传算法及其在生产计划优化中的应用.计算机工程与应用, 2003, (8):215-218 doi: 10.3321/j.issn:1002-8331.2003.08.071

    Zhan De-Chen, Chen Wei, Wang Zhong-Jie. The hybrid genetic algorithm based on heuristic rules and its application in production planning optimization. Computer Engineering and Applications, 2003, (8):215-218 doi: 10.3321/j.issn:1002-8331.2003.08.071
    [39] 肖志娇, 常会友, 衣杨.启发式规则与GA结合的优化方法求解工作流动态调度优化问题.计算机科学, 2007, 34(2):157-160 doi: 10.3969/j.issn.1002-137X.2007.02.039

    Xiao Zhi-Jiao, Chang Hui-You, Yi Yang. Optimization of workflow dynamic scheduling by heuristic rules and GA combined optimization method. Computer Science, 2007, 34(2):157-160 doi: 10.3969/j.issn.1002-137X.2007.02.039
    [40] He Y, Hui C W. A rule-based genetic algorithm for the scheduling of single-stage multi-product batch plants with parallel units. Computers & Chemical Engineering, 2008, 32(12):3067-3083 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=6588b9ed6b5af5cd7f66fb711ffb3321
    [41] Pistikopoulos E N. Uncertainty in process design and operations. Computers & Chemical Engineering, 1995, 19:553-563 http://www.sciencedirect.com/science/article/pii/0098135495870946
    [42] Ho J W, Fang C C. Production capacity planning for multiple products under uncertain demand conditions. International Journal of Production Economics, 2013, 141(2):593-604 doi: 10.1016/j.ijpe.2012.09.016
    [43] Ning Y, Liu J, Yan L. Uncertain aggregate production planning. Soft Computing, 2013, 17(4):617-624 doi: 10.1007/s00500-012-0931-4
    [44] Kórpeoĝlu E, Yaman H, Aktürk M S. A multi-stage stochastic programming approach in master production scheduling. European Journal of Operational Research, 2011, 213(1):166-179 doi: 10.1016/j.ejor.2011.02.032
    [45] Figueroa-García J C, Kalenatic D, Lopez-Bello C A. Multiperiod mixed production planning with uncertain demands:fuzzy and interval fuzzy sets approach. Fuzzy Sets and Systems, 2012, 206:21-38 doi: 10.1016/j.fss.2012.03.005
    [46] Torabi S A, Ebadian M, Tanha R. Fuzzy hierarchical production planning (with a case study). Fuzzy Sets and Systems, 2010, 161(11):1511-1529 doi: 10.1016/j.fss.2009.11.006
    [47] Guillaume R, Kobylański P, Zieliski P. Production planning with uncertain demands. In: Proceedings of the 2011 IEEE International Conference on Fuzzy Systems (FUZZ). Taipei, China: IEEE, 2011, 2644-2649
    [48] Iris C, Cevikcan E. A fuzzy linear programming approach for aggregate production planning. In: Proceedings of Supply Chain Management Under Fuzziness. Springer, Berlin, Heidelberg, 2014: 355-374
    [49] 唐加福, 汪定伟, 许宝栋.多品种集约生产计划问题的模糊方法.管理科学学报, 2003, 6(01):44-50 doi: 10.3321/j.issn:1007-9807.2003.01.007

    Tang Jia-Fu, Wang Ding-Wei, Xu Bao-Dong. The fuzzy method of multi-variety intensive production planning. Journal of Management, 2003, 6(01):44-50 doi: 10.3321/j.issn:1007-9807.2003.01.007
    [50] Aghezzaf E H, Sitompul C, Najid N M. Models for robust tactical planning in multi-stage production systems with uncertain demands. Computers & Operations Research, 2010, 37(5):880-889 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=b102182eaf5704f56e72706b69b122a2
    [51] Leung S C H, Tsang S O S, Ng W L, Wu Y. A robust optimization model for multi-site production planning problem in an uncertain environment. European Journal of Operational Research, 2007, 181(1):224-238 doi: 10.1016/j.ejor.2006.06.011
    [52] Rahmani D, Ramezanian R, Fattahi P, Heydari M. A robust optimization model for multi-product two-stage capacitated production planning under uncertainty. Applied Mathematical Modelling, 2013, 37(20-21):8957-8971 doi: 10.1016/j.apm.2013.04.016
    [53] 罗春鹏, 荣冈.不确定条件下汽油调和调度的鲁棒优化模型(英文).石油学报(石油加工), 2009, 25(03):391-400 doi: 10.3969/j.issn.1001-8719.2009.03.015

    Luo Chun-Peng, Rong Gang. Robust optimization model for gasoline harmonic scheduling under uncertain conditions. Journal of Petroleum (Petroleum Processing), 2009, 25(03):391-400 doi: 10.3969/j.issn.1001-8719.2009.03.015
    [54] Al-e S M J M, Aryanezhad M B, Sadjadi S J. An Efficient algorithm to solve a multi-objective robust aggregate production planning in an uncertain environment. The International Journal of Advanced Manufacturing Technology, 2012, 58(5-8):765-782 doi: 10.1007/s00170-011-3396-1
    [55] Lan Y, Zhao R, Tang W. Minimum risk criterion for uncertain production planning problems. Computers & Industrial Engineering, 2011, 61(3):591-599 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=c0e81920bea65c0208c3262ff9dfe5cb
    [56] 李歧强, 李明, 张平.基于事件逻辑的炼油企业动态调度系统.同济大学学报(自然科学版), 2010, 38(12):1836-1840 doi: 10.3969/j.issn.0253-374x.2010.12.024

    Li Qi-Qiang, Li Ming, Zhang Ping. Dynamic scheduling system based on event logic. Journal of Tongji University (Natural Science Edition), 2010, 38(12):1836-1840 doi: 10.3969/j.issn.0253-374x.2010.12.024
    [57] 徐佳东.基于Petri网的原油调度问题研究[博士学位论文], 浙江大学, 中国, 2014.

    Xu Jia-Dong. Research on crude oil scheduling based on Petri net[Ph. D. dissertation], Zhejiang University, China, 2014.
    [58] Ding J L, Yang C E, Xiao Q, Chai T Y, Jin Y C. Dynamic evolutionary multiobjective optimization for raw ore allocation in mineral processing. IEEE Transactions on Emerging Topics in Computational Intelligence, to be published.
    [59] Khoshnevis B, Chen Q M. Integration of process planning and scheduling functions. Journal of Intelligent Manufacturing, 1991, 2(3):165-175 doi: 10.1007/BF01471363
    [60] Shao X, Li X, Gao L, Zhang C. Integration of process planning and scheduling-a modified genetic algorithm-based approach. Computers & Operations Research, 2009, 36(6):2082-2096 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=2d1fd30fce56f1cadca2699ba6c75824
    [61] Chunpeng L, Gang R. A strategy for the integration of production planning and scheduling in refineries under uncertainty. Chinese Journal of Chemical Engineering, 2009, 17(1):113-127 doi: 10.1016/S1004-9541(09)60042-2
    [62] Yu G, Chai T, Luo X. Two-level production plan decomposition based on a hybrid MOEA for mineral processing. IEEE Transactions on Automation Science and Engineering, 2013, 10(4):1050-1071 doi: 10.1109/TASE.2012.2221458
    [63] Chu Y, You F, Wassick J M, Agarwal A. Integrated planning and scheduling under production uncertainties:bilevel model formulation and hybrid solution method. Computers & Chemical Engineering, 2015, 72:255-272 http://d.old.wanfangdata.com.cn/NSTLQK/NSTL_QKJJ0234591599/
    [64] Yu M, Zhang Y, Chen K, Zhang D. Integration of process planning and scheduling using a hybrid GA/PSO algorithm. The International Journal of Advanced Manufacturing Technology, 2015, 78(1-4):583-592 doi: 10.1007/s00170-014-6669-7
    [65] Baldea M, Harjunkoski I. Integrated production scheduling and process control:a systematic review. Computers & Chemical Engineering, 2014, 71:377-390 http://d.old.wanfangdata.com.cn/NSTLQK/NSTL_QKJJ0234501781/
    [66] Dias L S, Ierapetritou M G. Integration of scheduling and control under uncertainties:review and challenges. Chemical Engineering Research and Design, 2016, 116:98-113 doi: 10.1016/j.cherd.2016.10.047
    [67] 高小永, 江永亨, 黄德先.基于装置级优化控制与厂级调度优化集成的过程模型方法.化工学报, 2016, 67(12):5105-5111 http://d.old.wanfangdata.com.cn/Periodical/hgxb201612025

    Gao Xiao-Yong, Jiang Yong-Heng, Huang De-Xian. Process modelling based on integration of unitwide optimal process control and plantwide scheduling. CIESC Journal, 2016, 67(12):5105-5111 http://d.old.wanfangdata.com.cn/Periodical/hgxb201612025
    [68] Flores-Tlacuahuac A, Grossmann I E. Simultaneous cyclic scheduling and control of a multiproduct CSTR. Industrial & Engineering Chemistry Research, 2006, 45(20):6698-6712 doi: 10.1021/ie051293d
    [69] Zhuge J, Ierapetritou M G. Integration of scheduling and control with closed loop implementation. Industrial & Engineering Chemistry Research, 2012, 51(25):8550-8565 doi: 10.1021/ie3002364
    [70] Skogestad S. Control structure design for complete chemical plants. Computers & Chemical Engineering, 2004, 28(1-2):219-234 http://d.old.wanfangdata.com.cn/NSTLQK/NSTL_QKJJ025121846/
    [71] Ellis M, Christofides P D. Integrating dynamic economic optimization and model predictive control for optimal operation of nonlinear process systems. Control Engineering Practice, 2014, 22(22):242-251 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=d5cab633219a01a66ce7e1ded2d1b270
    [72] Baldea M, Du J, Park J, Harjunkoski I. Integrated production scheduling and model predictive control of continuous processes. AIChE Journal, 2015, 61(12):4179-4190 doi: 10.1002/aic.v61.12
    [73] Ellis M, Durand H, Christofides P D. A tutorial review of economic model predictive control methods. Journal of Process Control, 2014, 24(8):1156-1178 doi: 10.1016/j.jprocont.2014.03.010
    [74] Jschke J, Skogestad S. NCO tracking and self-optimizing control in the context of real-time optimization. Journal of Process Control, 2011, 21(10):1407-1416 doi: 10.1016/j.jprocont.2011.07.001
    [75] Skogestad S. Self-optimizing control: the missing link between steady-state optimization and control, Computers and Chemical Engineering, 2000, 24(2): 569-575
    [76] Skogestad S. Plantwide control:the search for the self-optimizing control structure. Journal of Process Control, 2000, 10(5):487-507 doi: 10.1016/S0959-1524(00)00023-8
    [77] De Souza G, Odloak D, Zanin A C. Real time optimization (RTO) with model predictive control (MPC). Computers & Chemical Engineering, 2010, 34(12):1999-2006 http://www.sciencedirect.com/science/article/pii/S0098135410002498
    [78] Marchetti A G, Ferramosca A, González A H. Steady-state target optimization designs for integrating real-time optimization and model predictive control. Journal of Process Control, 2014, 24(1):129-145 doi: 10.1016/j.jprocont.2013.11.004
    [79] Biegler L T, Yang X, Fischer G A G. Advances in sensitivity-based nonlinear model predictive control and dynamic real-time optimization. Journal of Process Control, 2015, 30:104-116 doi: 10.1016/j.jprocont.2015.02.001
    [80] Tosukhowong T, Lee J H. Real-time economic optimization for an integrated plant via a dynamic optimization scheme In:Proceedings of American Control Conference. Boston, Massachusetts:IEEE, 2004:233-238 https://www.sciencedirect.com/science/article/pii/S0959152415000281
    [81] Vega P, Revollar S, Francisco M, Francisco S M. Integration of set point optimization techniques into nonlinear MPC for improving the operation of WWTPs. Computers & Chemical Engineering, 2014, 68:78-95 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=5d777f5a02748ec3fa53532626dd6edc
    [82] Zhu G Y, Henson M A, Ogunnaike B A. A hybrid model predictive control strategy for nonlinear plant-wide control. Journal of process control, 2000, 10(5):449-458 doi: 10.1016/S0959-1524(00)00020-2
    [83] Zheng Y, Li S, Wang X. Distributed model predictive control for plant-wide hot-rolled strip laminar cooling process. Journal of Process Control, 2009, 19(9):1427-1437 doi: 10.1016/j.jprocont.2009.04.012
    [84] Fan J, Jiang Y, Chai T. MPC-based setpoint compensation with unreliable wireless communications and constrained operational conditions. Neurocomputing, 2017, 270:110-121 doi: 10.1016/j.neucom.2016.10.098
    [85] Xie S, Xie Y, Ying H, Gui W, Yang C. A hybrid control strategy for real-time control of the iron removal process of the zinc hydrometallurgy plants. IEEE Transactions on Industrial Informatics, 2018. http://ieeexplore.ieee.org/document/8315484/
    [86] Precup R E, Hellendoorn H. A survey on industrial applications of fuzzy control. Computers in Industry, 2011, 62(3):213-226 doi: 10.1016/j.compind.2010.10.001
    [87] Chai T, Ding J, Wu F. Hybrid intelligent control for optimal operation of shaft furnace roasting process. Control Engineering Practice, 2011, 19(3):264-275 doi: 10.1016/j.conengprac.2010.05.002
    [88] Chai T Y, Qin S J, Wang H. Optimal operational control for complex industrial processes. Annual Reviews in Control, 2014, 38(1):81-92 doi: 10.1016/j.arcontrol.2014.03.005
    [89] Ding J, Chen Q, Chai T, Wang H, Su C Y. Data mining based feedback regulation in operation of hematite ore mineral processing plant. In: Proceedings of American Control Conference, 2009. ACC'09. IEEE, 2009: 907-912
    [90] 周平, 柴天佑.典型赤铁矿磨矿过程智能运行反馈控制.控制理论与应用, 2014, 31(10):1352-1359 http://d.old.wanfangdata.com.cn/Periodical/kzllyyy201410008

    Zhou P, Chai T Y. Intelligent operational feedback control for typical hematite grinding processes. Control Theory & Applications, 2014, 31(10):1352-1359 http://d.old.wanfangdata.com.cn/Periodical/kzllyyy201410008
    [91] Wu Z, Wu Y, Chai T Y, Sun J. Data-driven abnormal condition identification and self-healing control system for fused magnesium furnace. IEEE Transactions on Industrial Electronics, 2014, 62(3):1703-1715 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=494609c5ba6af9ad52aebe7610001ff8
    [92] Jiang Y, Fan J, Chai T, Li J, Lewis F L. Data-driven flotation industrial process operational optimal control based on reinforcement learning. IEEE Transactions on Industrial Informatics, 2018, 14(5):1974-1989 doi: 10.1109/TII.2017.2761852
    [93] 李金娜, 高溪泽, 柴天佑, 范家璐.数据驱动的工业过程运行优化控制.控制理论与应用, 2016, 33(12):1584-1592 http://d.old.wanfangdata.com.cn/Periodical/kzllyyy201612005

    Li Jin-Na, Gao Xi-Ze, Chai Tian-You, Fan Jia-Lu. Data driven industrial process operation optimization control. Control Theory & Applications, 2016, 33(12):1584-1592 http://d.old.wanfangdata.com.cn/Periodical/kzllyyy201612005
    [94] Yu G, Chai T, Luo X. Multiobjective production planning optimization using hybrid evolutionary algorithms for mineral processing. IEEE Transactions on Evolutionary Computation, 2011, 15(4):487-514 doi: 10.1109/TEVC.2010.2073472
    [95] Ding J, Chai T, Wang H, Wang J, Zheng X. An intelligent factory-wide optimal operation system for continuous production process. Enterprise Information Systems, 2016, 10(3):286-302 doi: 10.1080/17517575.2015.1065346
    [96] Ding J, Modares H, Chai T, Lewis F L. Data-based multiobjective plant-wide performance optimization of industrial processes under dynamic environments. IEEE Transactions on Industrial Informatics, 2016, 12(2):454-465 doi: 10.1109/TII.2016.2516973
    [97] Chai T, Ding J, Wang H. Multi-objective hybrid intelligent optimization of operational indices for industrial processes and application. IFAC Proceedings Vol. 2011, 2011, 44(1): 10517-10522
    [98] Ding J, Yang C, Chai T. Recent progress on data-based optimization for mineral processing plants. Engineering, 2017, 3(2):183-187 doi: 10.1016/J.ENG.2017.02.015
    [99] Chai T, Ding J, Wang H. Multi-objective hybrid intelligent optimization of operational indices for industrial processes and application. In: Proceedings of IFAC World Congress, Milan, Italy: 2011, 10517-10522
    [100] Yang C, Ding J. Constrained dynamic multi-objective evolutionary optimization for operational indices of beneficiation process. Journal of Intelligent Manufacturing, 2017, DOI: 10.1007/s10845-017-1319-1
    [101] Ding J, Chai T, Wang H. Offline modeling for product quality prediction of mineral processing using modeling error PDF shaping and entropy minimization. IEEE Transactions on Neural Networks, 2011, 22(3):408-419 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dee3bbb4f85106750ddc4f36db4c4039
    [102] Ding J, Chai T, Cheng W, Zheng X. Data-based multiple-model prediction of the production rate for hematite ore beneficiation process. Control Engineering Practice, 2015, 45:219-229 doi: 10.1016/j.conengprac.2015.08.015
    [103] Liu C, Ding J, Toprac A J, Chai T. Data-based adaptive online prediction model for plant-wide production indices. Knowledge and Information Systems, 2014, 41(2):401-421 doi: 10.1007/s10115-014-0757-8
    [104] Liu C, Ding J, Chai T. Robust prediction for quality of industrial processes. In: Proceedings of the 2014 IEEE International Conference on Information and Automation (ICIA). Hailar, China: IEEE, 2014. 1172-1175
    [105] Ding J, Zhao L, Liu C, Chai T. GA-based principal component selection for production performance estimation in mineral processing. Computers & Electrical Engineering, 2014, 40(5):1447-1459 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=169abd78c4f21ccf36b4647891bd1c15
    [106] Ding J, Chai T, Wang H, Chen X. Knowledge-based global operation of mineral processing under uncertainty. IEEE Transactions on Industrial Informatics, 2012, 8(4):849-859 doi: 10.1109/TII.2012.2205394
  • 加载中
图(1)
计量
  • 文章访问数:  3943
  • HTML全文浏览量:  1163
  • PDF下载量:  2593
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-08-16
  • 录用日期:  2018-10-08
  • 刊出日期:  2018-11-20

目录

    /

    返回文章
    返回