2.845

2023影响因子

(CJCR)

  • 中文核心
  • EI
  • 中国科技核心
  • Scopus
  • CSCD
  • 英国科学文摘

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于在线感知Pareto前沿划分目标空间的多目标进化优化

封文清 巩敦卫

封文清, 巩敦卫. 基于在线感知 Pareto 前沿划分目标空间的多目标进化优化. 自动化学报, 2020, 46(8): 1628−1643 doi: 10.16383/j.aas.2018.c180323
引用本文: 封文清, 巩敦卫. 基于在线感知 Pareto 前沿划分目标空间的多目标进化优化. 自动化学报, 2020, 46(8): 1628−1643 doi: 10.16383/j.aas.2018.c180323
Feng Wen-Qing, Gong Dun-Wei. Multi-objective evolutionary optimization with objective space partition based on online perception of Pareto front. Acta Automatica Sinica, 2020, 46(8): 1628−1643 doi: 10.16383/j.aas.2018.c180323
Citation: Feng Wen-Qing, Gong Dun-Wei. Multi-objective evolutionary optimization with objective space partition based on online perception of Pareto front. Acta Automatica Sinica, 2020, 46(8): 1628−1643 doi: 10.16383/j.aas.2018.c180323

基于在线感知Pareto前沿划分目标空间的多目标进化优化

doi: 10.16383/j.aas.2018.c180323
基金项目: 

国家重点研发计划项目 2018YFB1003802-01

国家自然科学基金 61773384

国家自然科学基金 61763026

国家自然科学基金 61673404

国家自然科学基金 61573361

国家自然科学基金 61503220

国家973科技计划项目 2014CB046306-2

详细信息
    作者简介:

    封文清  中国矿业大学信息与控制工程学院博士研究生. 2013年获得黑龙江大学硕士学位.主要研究方向为多目标进化优化与应用. E-mail: fwq_cumt@163.com

    通讯作者:

    巩敦卫  中国矿业大学信息与控制工程学院教授. 1999年获得中国矿业大学博士学位.主要研究方向为进化计算与应用.本文通信作者. E-mail: dwgong@vip.163.com

Multi-objective Evolutionary Optimization With Objective Space Partition Based on Online Perception of Pareto Front

Funds: 

The National Key Research and Development Program of China 2018YFB1003802-01

National Natural Science Foundation of China 61773384

National Natural Science Foundation of China 61763026

National Natural Science Foundation of China 61673404

National Natural Science Foundation of China 61573361

National Natural Science Foundation of China 61503220

National Basic Research Program of China (973 Program) 2014CB046306-2

More Information
    Author Bio:

    FENG Wen-Qing  Ph. D. candidate at the School of Information and Control Engineering, China University of Mining and Technology. She received her master degree from Heilongjiang University in 2013. Her research interest covers multi-objective evolutionary optimization and its applications

    Corresponding author: GONG Dun-Wei  Professor at the School of Information and Control Engineering, China University of Mining and Technology. He received his Ph. D. degree from China University of Mining and Technology in 1999. His research interest covers evolutionary computation and its applications. Corresponding author of this paper
  • 摘要: 多目标进化优化是求解多目标优化问题的可行方法.但是, 由于没有准确感知并充分利用问题的Pareto前沿, 已有方法难以高效求解复杂的多目标优化问题.本文提出一种基于在线感知Pareto前沿划分目标空间的多目标进化优化方法, 以利用感知的结果, 采用有针对性的进化优化方法求解多目标优化问题.首先, 根据个体之间的拥挤距离与给定阈值的关系感知优化问题的Pareto前沿上的间断点, 并基于此将目标空间划分为若干子空间; 然后, 在每一子空间中采用MOEA/D (Multi-objective evolutionary algorithm based on decomposition)得到一个外部保存集; 最后, 基于所有外部保存集生成问题的Pareto解集.将提出的方法应用于15个基准数值函数优化问题, 并与NSGA-Ⅱ、RPEA、MOEA/D、MOEA/DPBI、MOEA/D-STM和MOEA/D-ACD等比较.结果表明, 提出的方法能够产生收敛和分布性更优的Pareto解集, 是一种非常有竞争力的方法.
    Recommended by Associate Editor WEI Qing-Lai
    1)  本文责任编委  魏庆来
  • 图  1  总体框架

    Fig.  1  General framework

    图  2  搜索间断点

    Fig.  2  Searching for discontinuous points

    图  3  网格的形成

    Fig.  3  Forming grids

    图  4  目标空间划分

    Fig.  4  Dividing the objective space

    图  5  子空间信息交互

    Fig.  5  Information interaction among subspaces

    图  6  个体分布的调整

    Fig.  6  Adjusting the distribution of individuals

    图  7  个体数量调整

    Fig.  7  Adjusting the number of individuals

    图  8  不同时$\alpha$的IGD、GD和运算时间

    Fig.  8  Curves of IGD, GD and time for different values of $\alpha$

    图  9  IGD指标随$\alpha$的变化曲线

    Fig.  9  Curves of IGD with respect to the number of generations for different values of $\alpha$

    图  10  $\alpha$取不同值时, ZDT3的Pareto前沿

    Fig.  10  Pareto front of different values of $\alpha$ for ZDT3

    表  1  不同方法求解测试函数的IGD值

    Table  1  The values of IGD obtained by different algorithms

    优化问题 NSGA-Ⅱ RPEA MOEA/D MOEA/D-PBI MOEA/D-STM MOEA/D-ACD MOEA-PPF
    ZDT1 $6.546 \times 10^{-3}\dagger$ $2.260\times 10^{-3}\dagger$ $8.708 \times 10^{-4}$ $1.608\times 10^{-3}\dagger$ $7.637 \times10^{-4}\dagger$ ${\bf 7.629 \times 10^{-4}}\dagger$ $8.668 \times 10^{-4}$
    ZDT2 $1.685\times 10^{-2}\dagger$ $4.700\times 10^{-3}\dagger$ $8.392 \times 10^{-4}$ $1.110\times10^{-3}\dagger$ $7.507 \times 10^{-4}\dagger$ ${\bf 7.502 \times 10^{-4}}\dagger$ $8.368 \times 10^{-4}$
    ZDT3 $2.647\times 10^{-3}\dagger$ $3.534\times 10^{-3}\dagger$ $2.038\times 10^{-3}\dagger$ $3.978\times 10^{-3}\dagger$ $2.060\times 10^{-3}\dagger$ $2.050\times10^{-3}\dagger$ ${\bf 1.620 \times10^{-3}}$
    ZDT4 $2.463\times 10^{-2}\dagger$ $2.198\times 10^{-3}\dagger$ $7.791 \times 10^{-4}$ $1.277\times 10^{-3}\dagger$ ${\bf 7.637 \times 10^{-4}}\dagger$ $7.819 \times10^{-4}$ $7.719 \times10^{-4}$
    ZDT6 $8.319 \times10^{-4}\dagger$ $1.177 \times10^{-1}\dagger$ $3.994 \times 10^{-4}$ $4.006 \times 10^{-4}$ ${\bf 3.811 \times10^{-4}}\dagger$ $5.225 \times 10^{-4}\dagger$ 3.988 $\times 10^{-4}$
    KUR $3.962 \times10^{-1}$ $3.284\times 10^{-2}\dagger$ 1.012 $\times 10^{-2}$ $1.029 \times10^{-2}$ $9.779\times 10^{-3}\dagger$ $9.853 \times 10^{-3}$ ${\bf 9.609 \times 10^{-3}}$
    WFG1 $6.949 \times10^{-1}\dagger$ $4.685 \times10^{-1}\dagger$ $4.553 \times10^{-3}$ $3.248 \times10^{-2}\dagger$ $8.218 \times10^{-3}$ $4.680 \times10^{-1}\dagger$ ${\bf 3.940 \times 10^{-3}}$
    WFG2 $3.968 \times 10^{-3}$ $1.049\times 10^{-3}\dagger$ $5.063 \times 10^{-3}$ $4.850 \times10^{-2}\dagger$ $4.805 \times 10^{-3}$ $5.241 \times 10^{-3}$ ${\bf 3.748 \times10^{-3}}$
    WFG3 $3.198 \times10^{-3}$ $5.316 \times10^{-3}\dagger$ $2.953 \times10^{-3}$ $4.498 \times10^{-3}\dagger$ ${\bf 2.597 \times 10^{-3}}\dagger$ $2.747\times10^{-3}\dagger$ $2.951 \times10^{-3}$
    WFG4 $2.665 \times10^{-2}\dagger$ $1.816 \times10^{-2}\dagger$ $5.724 \times10^{-3}$ $1.886 \times10^{-2}\dagger$ $8.427 \times10^{-3}\dagger$ $1.215 \times10^{-2}\dagger$ ${\bf 5.122 \times10^{-3}}$
    WFG5 $6.206 \times10^{-3}\dagger$ $6.777 \times10^{-2}\dagger$ $6.326 \times10^{-2}$ $6.852 \times10^{-2}$ ${\bf 6.179\times10^{-2}}\dagger$ $6.287 \times10^{-2}\dagger$ $6.510 \times10^{-2}$
    WFG6 $5.278 \times10^{-2}\dagger$ $7.205 \times10^{-2}\dagger$ $5.560 \times10^{-2}$ $5.597 \times10^{-2}$ $2.862 \times10^{-3}\dagger$ ${\bf 2.672\times10^{-3}}$ $5.287 \times10^{-2}$
    WFG7 $3.186 \times10^{-3}\dagger$ $3.014 \times10^{-2}\dagger$ $2.663 \times10^{-3}$ $3.850 \times10^{-3}\dagger $ ${\bf 2.585\times10^{-3}}\dagger$ $2.666 \times10^{-3}$ $2.689 \times10^{-3}$
    WFG8 $1.129 \times10^{-1}$ $1.017\times10^{-1}\dagger$ $1.033 \times10^{-1}\dagger$ $1.074 \times10^{-1}$ $9.793 \times10^{-2}\dagger$ ${\bf 8.302\times10^{-2}}\dagger$ $1.029 \times10^{-1}$
    WFG9 $1.915 \times10^{-2}$ $1.272 \times10^{-2}\dagger$ $1.533 \times10^{-2}$ $2.155 \times10^{-2}$ $1.229 \times10^{-2}$ ${\bf 8.062\times10^{-3}}$ $1.522 \times10^{-2}$
    †表示对比方法与本文方法的IGD指标具有显著差异(Mann-Whitney U分布检验, 置信水平为0.05)
    下载: 导出CSV

    表  2  不同方法获得的CR值

    Table  2  Metric CR obtained by different algorithms

    优化问题 NSGA-Ⅱ RPEA MOEA/D MOEA/D-PBI MOEA/D-STM MOEA/D-ACD MOEA-PPF
    ZDT1 0.9400 0.6860 0.9440 0.9360 0.9440 0.9440 0.9440
    ZDT2 0.9260 0.6380 0.9960 0.9940 0.9960 0.9960 0.9960
    ZDT3 0.6440 0.4340 0.5760 0.6460 0.5760 0.6720 0.7480
    ZDT4 0.9340 0.6320 0.9440 0.9340 0.9440 0.9420 0.9440
    ZDT6 0.9460 0.6640 0.9960 0.9960 0.9960 0.9960 0.9960
    KUR 0.8020 0.6060 0.7800 0.9160 0.7780 0.8940 0.9140
    WFG1 0.7320 0.3620 0.8700 0.8240 0.8480 0.4520 0.8720
    WFG2 0.6100 0.3680 0.4880 0.6060 0.4860 0.6220 0.7360
    WFG3 0.9460 0.8260 0.9920 0.9960 0.9960 0.9960 0.9960
    WFG4 0.9280 0.5820 0.9500 0.9520 0.8440 0.8340 0.9560
    WFG5 0.9020 0.5760 0.9180 0.9180 0.9540 0.9140 0.9200
    WFG6 0.9000 0.5500 0.9460 0.9580 0.9620 0.9620 0.9580
    WFG7 0.9240 0.5780 0.9660 0.9700 0.9680 0.9620 0.9680
    WFG8 0.5400 0.3500 0.9060 0.9220 0.9140 0.9180 0.9000
    WFG9 0.9220 0.6340 0.9260 0.9280 0.8920 0.9220 0.8980
    下载: 导出CSV
  • [1] 左兴权, 王春露, 赵新超.一种结合多目标免疫算法和线性规划的双行设备布局方法.自动化学报, 2015, 41(3): 528-540 doi: 10.16383/j.aas.2015.c140082

    Zuo Xing-Quan, Wang Chun-Lu, Zhao Xin-Chao. Combining multi-objective immune algorithm and linear programming for double row layout problem. Acta Automatica Sinica, 2015, 41(3): 528-540 doi: 10.16383/j.aas.2015.c140082
    [2] Han Y Y, Gong D W, Jin Y C, Pan Q K. Evolutionary multi-objective blocking lot-streaming flow shop scheduling with interval processing time. Applied Soft Computing, 2016, 42: 229-245 doi: 10.1016/j.asoc.2016.01.033
    [3] Li Y M, Tong S C. Adaptive fuzzy output-feedback stabilization control for a class of switched nonstrict-feedback nonlinear systems. IEEE Transactions on Cybernetics, 2017, 47(4): 1007-1016 doi: 10.1109/TCYB.2016.2536628
    [4] 段凯蓉, 张功萱.基于多目标免疫系统算法的云任务调度策略.计算机应用, 2016, 36(2): 324-329 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=jsjyy201602007

    Duan Kai-Rong, Zhang Gong-Xuan. Multi-objective immune system algorithm for task scheduling in cloud computing. Journal of Computer Applications, 2016, 36(2): 324-329 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=jsjyy201602007
    [5] Deb K. Multi-Objective Optimization Using Evolutionary Algorithms. Chichester: John Wiley & Sons, 2001. 277-293
    [6] 刘元, 郑金华, 邹娟, 喻果.基于邻域竞赛的多目标优化算法.自动化学报, 2018, 44(7): 1304-1320 doi: 10.16383/j.aas.2017.c160315

    Liu Yuan, Zheng Jin-Hua, Zou Juan, Yu Guo. An evolutionary algorithm through neighborhood competition for multi-objective optimization. Acta Automatica Sinica, 2018, 44(7): 1304-1320 doi: 10.16383/j.aas.2017.c160315
    [7] 乔俊飞, 韩改堂, 周红标.基于知识的污水生化处理过程智能优化方法.自动化学报, 2017, 43(6): 1038-1046 doi: 10.16383/j.aas.2017.c170088

    Qiao Jun-Fei, Han Gai-Tang, Zhou Hong-Biao. Knowledge-based intelligent optimal control for wastewater biochemical treatment process. Acta Automatica Sinica, 2017, 43(6): 1038-1046 doi: 10.16383/j.aas.2017.c170088
    [8] 丁进良, 杨翠娥, 陈立鹏, 柴天佑.基于参考点预测的动态多目标优化算法.自动化学报, 2017, 43(2): 313-320 doi: 10.16383/j.aas.2017.c150811

    Ding Jin-Liang, Yang Cui-E, Chen Li-Peng, Chai Tian-You. Dynamic multi-objective optimization algorithm based on reference point prediction. Acta Automatica Sinica, 2017, 43(2): 313-320 doi: 10.16383/j.aas.2017.c150811
    [9] 巩敦卫, 刘益萍, 孙晓燕, 韩玉艳.基于目标分解的高维多目标并行进化优化方法.自动化学报, 2015, 41(8): 1438-1451 doi: 10.16383/j.aas.2015.c140832

    Gong Dun-Wei, Liu Yi-Ping, Sun Xiao-Yan, Han Yu-Yan. Parallel many-objective evolutionary optimization using objectives decomposition. Acta Automatica Sinica, 2015, 41(8): 1438-1451 doi: 10.16383/j.aas.2015.c140832
    [10] Li H, Zhang Q F. Multiobjective optimization problems with complicated Pareto sets, MOEA/D and NSGA-Ⅱ. IEEE Transactions on Evolutionary Computation, 2009, 13(2): 284-302 doi: 10.1109/TEVC.2008.925798
    [11] Geoffrion A M. Proper efficiency and the theory of vector maximization. Journal of Mathematical Analysis and Applications, 1968, 22(3): 618-630 doi: 10.1016/0022-247X(68)90201-1
    [12] Zadeh L. Optimality and non-scalar-valued performance criteria. IEEE Transactions on Automatic Control, 1963, 8(1): 59-60 doi: 10.1109/TAC.1963.1105511
    [13] Fonseca C M, Fleming P J. Genetic algorithms for multiobjective optimization: formulation, discussion and generalization. In: Proceedings of the 5th International Conference on Genetic Algorithms. San Mateo, USA: ACM, 1993. 416-423
    [14] Srinivas N, Deb K. Muiltiobjective optimization using nondominated sorting in genetic algorithms. Evolutionary Computation, 1994, 2(3): 221-248 doi: 10.1162/evco.1994.2.3.221
    [15] Horn J, Nafpliotis N, Goldberg D E. A niched Pareto genetic algorithm for multiobjective optimization. In: Proceedings of the 1st IEEE Conference on Evolutionary Computation. IEEE World Congress on Computational Intelligence. Orlando, USA: IEEE, 1994. 82-87
    [16] Zitzler E, Laumanns M, Thiele L. SPEA2: improving the strength Pareto evolutionary algorithm. In: Proceedings of 2002 Evolutionary Methods for Design, Optimisation and Control with Application to Industrial Problems. Berlin, Germany: Springer-Verlag, 2002. 95-100
    [17] Deb K, Pratap A, Agarwal A, Meyarivan T. A fast and elitist multiobjective genetic algorithm: NSGA-Ⅱ. IEEE Transactions on Evolutionary Computation, 2002, 6(2): 182-197 doi: 10.1109/4235.996017
    [18] Corne D W, Jerram N R, Knowles J D, Oates M J. PESA-Ⅱ: region-based selection in evolutionary multiobjective optimization. In: Proceedings of the 3rd Annual Conference on Genetic and Evolutionary Computation. San Francisco, California, USA: Morgan Kaufmann Publishers, 2001. 283-290
    [19] Bader J, Zitzler E. HypE: An algorithm for fast hypervolume-based many-objective optimization. Evolutionary Computation, 2011, 19(1): 45-76 doi: 10.1162/EVCO_a_00009
    [20] Zitzler E, Künzli S. Indicator-based selection in multiobjective search. In: Proceedings of the 8th International Conference on Parallel Problem Solving from Nature. Birmingham, UK: Springer-Verlag, 2004. 832-842
    [21] Gu F Q, Liu H L. A novel weight design in multi-objective evolutionary algorithm. In: Proceedings of the 2010 International Conference on Computational Intelligence and Security. Nanning, China: IEEE, 2010. 137-141
    [22] Qi Y T, Ma X L, Liu F, Jiao L C, Sun J Y, Wu J S. MOEA/D with adaptive weight adjustment. Evolutionary Computation, 2014, 22(2): 231-264 doi: 10.1162/EVCO_a_00109
    [23] Cheng R, Jin Y C, Olhofer M, Sendhoff B. A reference vector guided evolutionary algorithm for many-objective optimization. IEEE Transactions on Evolutionary Computation, 2016, 20(5): 773-791 doi: 10.1109/TEVC.2016.2519378
    [24] Asafuddoula M, Singh H K, Ray T. An enhanced decomposition-based evolutionary algorithm with adaptive reference vectors. IEEE Transactions on Cybernetics, 2018, 48(8): 2321-2334 doi: 10.1109/TCYB.2017.2737519
    [25] Liu Y P, Gong D W, Sun X Y, Zhang Y. Many-objective evolutionary optimization based on reference points. Applied Soft Computing, 2017, 50: 344-355 doi: 10.1016/j.asoc.2016.11.009
    [26] Zhang Q F, Li H. MOEA/D: A multiobjective evolutionary algorithm based on decomposition. IEEE Transactions on Evolutionary Computation, 2007, 11(6): 712-731 doi: 10.1109/TEVC.2007.892759
    [27] Li K, Zhang Q F, Kwong S, Li M Q, Wang R. Stable matching-based selection in evolutionary multiobjective optimization. IEEE Transactions on Evolutionary Computation, 2014, 18(6): 909-923 doi: 10.1109/TEVC.2013.2293776
    [28] Wang L P, Zhang Q F, Zhou A M, Gong M G, Jiao L C. Constrained subproblems in a decomposition-based multiobjective evolutionary algorithm. IEEE Transactions on Evolutionary Computation, 2016, 20(3): 475-480 doi: 10.1109/TEVC.2015.2457616
    [29] Storn R, Price K. Differential evolution --- A simple and efficient heuristic for global optimization over continuous spaces. Journal of Global Optimization, 1997, 11(4): 341-359 doi: 10.1023/A:1008202821328
    [30] Dorigo M, Maniezzo V, Colorni A. Ant system: Optimization by a colony of cooperating agents. IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics), 1996, 26(1): 29-41 doi: 10.1109/3477.484436
    [31] Branke J, Mostaghim S. About selecting the personal best in multi-objective particle swarm optimization. Parallel Problem Solving from Nature-PPSN IX. Berlin, Island: Springer, 2006. 52-532
    [32] 雷德明, 吴智铭. Pareto档案多目标粒子群优化.模式识别与人工智能, 2006, 19(4): 475-480 doi: 10.3969/j.issn.1003-6059.2006.04.008

    Lei De-Ming, Wu Zhi-Ming. Pareto archive multi-objective particle swarm optimization. Pattern Recognition and Artificial Intelligence, 2006, 19(4): 475-480 doi: 10.3969/j.issn.1003-6059.2006.04.008
    [33] Huang V L, Suganthan P N, Liang J J. Comprehensive learning particle swarm optimizer for solving multiobjective optimization problems. International Journal of Intelligent Systems, 2006, 21(2): 209-226 doi: 10.1002/int.20128
    [34] 公茂果, 程刚, 焦李成, 刘超.基于自适应划分的进化多目标优化非支配个体选择策略.计算机研究与发展, 2011, 48(4): 545-557 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=jsjyjyfz201104001

    Gong Mao-Guo, Cheng Gang, Jiao Li-Cheng, Liu Chao. Nondominated individual selection strategy based on adaptive partition for evolutionary multi-objective optimization. Journal of Computer Research and Development, 2011, 48(4): 545-557 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=jsjyjyfz201104001
    [35] Deng L Y, Lin V, Chen M. Hybrid ant colony optimization for the resource-constrained project scheduling problem. Journal of Systems Engineering and Electronics, 2010, 21(1): 67-71 http://cn.bing.com/academic/profile?id=c215fe8cdf5ed804894cd3567dd3ab04&encoded=0&v=paper_preview&mkt=zh-cn
    [36] Zheng W, Wu X X, Yang X B, Cao S C, Liu W X, Lin J. Test suite minimization with mutation testing-based many-objective evolutionary optimization. In: Proceedings of the 2017 International Conference on Software Analysis, Testing and Evolution. Harbin, China: IEEE, 2017. 32-36
    [37] Wang R, Ishibuchi H, Zhang Y, Zheng X K, Zhang T. On the effect of localized PBI method in MOEA/D for multi-objective optimization. In: Proceedings of the 2016 IEEE Symposium Series on Computational Intelligence (SSCI). Athens, Greece: IEEE, 2016. 1-8
    [38] Jiang S Y, Yang S X. An improved multiobjective optimization evolutionary algorithm based on decomposition for complex Pareto fronts. IEEE Transactions on Cybernetics, 2016, 46(2): 421-437 doi: 10.1109/TCYB.2015.2403131
    [39] Deb K, Thiele L, Laumanns M, Zitzler E. Scalable test problems for evolutionary multiobjective optimization. Evolutionary Multiobjective Optimization: Theoretical Advances and Applications. London: Springer, 2005. 187-196
    [40] Kursawe F. A variant of evolution strategies for vector optimization. In: Proceedings of the 1st Workshop Parallel Problem Solving from Nature. Berlin, Heidelberg, Germany: Springer, 1991. 193-197
    [41] Huband S, Barone L, While L, Hingston P. A scalable multi-objective test problem toolkit. Evolutionary Multi-Criterion Optimization. Berlin, Heidelberg: Springer, 2005. 280-295
    [42] Zhang Q, Zhou A, Zhao S, Suganthan P N, Liu W, Tiwari S. Multiobjective Optimization Test Instances for the CEC 2009 Special Session and Competition, Technical Report CES-487, University of Essex and Nanyang Technological University, Singapore, 2008.
  • 加载中
图(10) / 表(2)
计量
  • 文章访问数:  1837
  • HTML全文浏览量:  389
  • PDF下载量:  263
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-05-18
  • 录用日期:  2018-08-28
  • 刊出日期:  2020-08-26

目录

    /

    返回文章
    返回