[1]
|
Baker K R, Smith J C. A multiple-criterion model for machine scheduling. Journal of Scheduling, 2003, 6(1): 7-16 doi: 10.1023/A:1022231419049
|
[2]
|
Agnetis A, Mirchandani P B, Pacciarelli D, Pacifici A. Scheduling problems with two competing agents. Operations Research, 2004, 52(2): 229-242 doi: 10.1287/opre.1030.0092
|
[3]
|
Perez-Gonzalez P, Framinan J M. A common framework and taxonomy for multicriteria scheduling problems with interfering and competing jobs: multi-agent scheduling problems. European Journal of Operational Research, 2014, 235(1): 1-16 http://cn.bing.com/academic/profile?id=d83ba5b1366d427e307f2996e67e39a1&encoded=0&v=paper_preview&mkt=zh-cn
|
[4]
|
Agnetis A, Billaut J C, Gawiejnowicz S, Pacciarelli D, Soukhal A. Multiagent Scheduling: Models and Algorithms. Heidelberg: Springer, 2014.
|
[5]
|
Li S S, Yuan J J. Unbounded parallel-batching scheduling with two competitive agents. Journal of Scheduling, 2012, 15(5): 629-640 doi: 10.1007/s10951-011-0253-x
|
[6]
|
Fan B Q, Cheng T C E, Li S S, Feng Q. Bounded parallel-batching scheduling with two competing agents. Journal of Scheduling, 2013, 16(3): 261-271 doi: 10.1007/s10951-012-0274-0
|
[7]
|
Wang J Q, Fan G Q, Zhang Y Q, Zhang C W, Leung J Y T. Two-agent scheduling on a single parallel-batching machine with equal processing time and non-identical job sizes. European Journal of Operational Research, 2017, 258(2): 478-490 doi: 10.1016/j.ejor.2016.10.024
|
[8]
|
Tang L X, Zhao X L, Liu J Y, Leung J Y T. Competitive two-agent scheduling with deteriorating jobs on a single parallel-batching machine. European Journal of Operational Research, 2017, 263(2): 401-411 doi: 10.1016/j.ejor.2017.05.019
|
[9]
|
Yin Y Q, Wu W H, Cheng S R, Wu C C. An investigation on a two-agent single-machine scheduling problem with unequal release dates. Computers & Operations Research, 2012, 39(12): 3062-3073 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=a9a59b2f6984e4385a5c3da81206fd84
|
[10]
|
Lee W C, Chung Y H, Hu M C. Genetic algorithms for a two-agent single-machine problem with release time. Applied Soft Computing, 2012, 12(11): 3580-3589 doi: 10.1016/j.asoc.2012.06.015
|
[11]
|
Wu C C, Wu W H, Chen J C, Yin Y Q, Wu W H. A study of the single-machine two-agent scheduling problem with release times. Applied Soft Computing, 2013, 13(2): 998-1006 doi: 10.1016/j.asoc.2012.10.003
|
[12]
|
Cheng T C E, Chung Y H, Liao S C, Lee W C. Two-agent singe-machine scheduling with release times to minimize the total weighted completion time. Computers & Operations Research, 2013, 40(1): 353-361 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=30b2aab966d975e2914462ee77a86bc1
|
[13]
|
Dover O, Shabtay D. Single machine scheduling with two competing agents, arbitrary release dates and unit processing times. Annals of Operations Research, 2016, 238(1-2): 145-178 doi: 10.1007/s10479-015-2054-7
|
[14]
|
Potts C N, Kovalyov M Y. Scheduling with batching: a review. European Journal of Operational Research, 2000, 120(2): 228-249 doi: 10.1016/S0377-2217(99)00153-8
|
[15]
|
Brucker P, Gladky A, Hoogeveen H, Kovalyov M Y, Potts C N, Tautenhahn T, et al. Scheduling a batching machine. Journal of Scheduling, 1998, 1(1): 31-54 doi: 10.1002/(SICI)1099-1425(199806)1:1<31::AID-JOS4>3.0.CO;2-R
|
[16]
|
Lee C Y. Minimizing makespan on a single batch processing machine with dynamic job arrivals. International Journal of Production Research, 1999, 37(1): 219-236 doi: 10.1080/002075499192020
|
[17]
|
Liu Z H, Yu W C. Scheduling one batch processor subject to job release dates. Discrete Applied Mathematics, 2000, 105(1-3): 129-136 doi: 10.1016/S0166-218X(00)00181-5
|
[18]
|
Liu Z H, Cheng T C E. Approximation schemes for minimizing total (weighted) completion time with release dates on a batch machine. Theoretical Computer Science, 2005, 347(1-2): 288-298 doi: 10.1016/j.tcs.2005.07.028
|