2.845

2023影响因子

(CJCR)

  • 中文核心
  • EI
  • 中国科技核心
  • Scopus
  • CSCD
  • 英国科学文摘

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于非参数密度估计的不确定轨迹预测方法

程媛 迟荣华 黄少滨 吕天阳

程媛, 迟荣华, 黄少滨, 吕天阳. 基于非参数密度估计的不确定轨迹预测方法. 自动化学报, 2019, 45(4): 787-798. doi: 10.16383/j.aas.2018.c170419
引用本文: 程媛, 迟荣华, 黄少滨, 吕天阳. 基于非参数密度估计的不确定轨迹预测方法. 自动化学报, 2019, 45(4): 787-798. doi: 10.16383/j.aas.2018.c170419
CHENG Yuan, CHI Rong-Hua, HUANG Shao-Bin, LV Tian-Yang. Uncertain Trajectory Prediction Method Using Non-parametric Density Estimation. ACTA AUTOMATICA SINICA, 2019, 45(4): 787-798. doi: 10.16383/j.aas.2018.c170419
Citation: CHENG Yuan, CHI Rong-Hua, HUANG Shao-Bin, LV Tian-Yang. Uncertain Trajectory Prediction Method Using Non-parametric Density Estimation. ACTA AUTOMATICA SINICA, 2019, 45(4): 787-798. doi: 10.16383/j.aas.2018.c170419

基于非参数密度估计的不确定轨迹预测方法

doi: 10.16383/j.aas.2018.c170419
基金项目: 

黑龙江省自然科学基金 F2017015

国家自然科学基金 91546110

黑龙江省普通高等学校青年创新人才培养计划 UNPYSC T-2017079

详细信息
    作者简介:

    程媛 哈尔滨理工大学计算机科学与技术学院讲师.主要研究方向为数据挖掘, 不确定性研究.E-mail:changuang7@sina.com

    黄少滨 哈尔滨工程大学计算机科学与技术学院教授.主要研究方向为分布式计算与仿真, 模型检测, 数据集成.E-mail:huangshaobin@hrbeu.edu.cn

    吕天阳 审计署计算机技术中心国家仿真实验室高级工程师.主要研究方向为复杂网络, 计算机审计.E-mail:raynor1979@163.com

    通讯作者:

    迟荣华  哈尔滨工程大学计算机科学与技术学院博士研究生.主要研究方向为机器学习, 不确定性研究.本文通信作者.E-mail:chironghua@126.com

Uncertain Trajectory Prediction Method Using Non-parametric Density Estimation

Funds: 

Natural Science Foundation of Heilongjiang Province F2017015

National Natural Science Foundation of China 91546110

Training Program for Young Innovators in Heilongjiang General Institutes of Higher Education UNPYSC T-2017079

More Information
    Author Bio:

      Lecturer at the College of Computer Science and Technology, Harbin University of Science and Technology. Her research interest covers data mining and uncertainty research

      Professor at the College of Computer Science and Technology, Harbin Engineering University. His research interest covers distributed computing and simulation, model checking, and data integration

      Senior engineer at the National Audit Simulation Laboratory of IT Center, National Audit Office. His research interest covers complex network and computer-aided audit

    Corresponding author: CHI Rong-Hua   Ph. D. candidate at the College of Computer Science and Technology, Harbin Engineering University. His research interest covers machine learning and uncertainty research. Corresponding author of this paper
  • 摘要: 随着大量移动设备的出现,准确和高效的轨迹预测有助于提高面向位置的应用和服务的质量和水平.针对现有方法对轨迹不确定性缺乏有效建模的问题,提出了基于非参数密度估计的不确定轨迹终点预测方法.在轨迹建模及模型训练阶段,利用非参数估计对起点与终点相同的轨迹构建基于密度分布的不确定轨迹模型;在轨迹预测阶段,将待预测轨迹视为轨迹数据流,并通过KS(Kolmogorov-Smirnov)检验方法与具有相同起点的不确定轨迹模型进行匹配,其中匹配程度最高的不确定轨迹即为预测轨迹.通过真实轨迹数据集上的实验表明,与现有各类主要轨迹预测方法相比,本方法在不同条件下的预测效率与准确性都有较明显优势.
    1)  本文责任编委  曾志刚
  • 图  1  不确定轨迹示意图

    Fig.  1  Uncertain trajectory

    图  2  轨迹预测示意图

    Fig.  2  Trajectory prediction

    图  3  停留时间的频次分布图

    Fig.  3  Frequency distribution of marking time

    图  4  不同显著性水平下的有效样本规模

    Fig.  4  Significance level of different data scale

    图  5  不确定轨迹预测的累计密度及其误差变化

    Fig.  5  Accumulation density and error of uncertain trajectory prediction

    图  6  预测算法准确度分析

    Fig.  6  Prediction method accuracy

    图  7  T-Drive数据集的准确性验证

    Fig.  7  Accuracy verification on T-Drive

    图  8  Geolife数据集的准确性验证

    Fig.  8  Accuracy verification on Geolife

    图  9  算法执行效率比较

    Fig.  9  Algorithms execution efficiency comparison

    表  1  数据集上各算法的预测准确性对比

    Table  1  Prediction accuracy comparison of several methods on Geolife

    样本规模 MBM BNM RBM NNM UDTM
    30% 0.496 0.51 0.434 0.552 0.671
    0.515 0.511 0.491 0.549 0.663
    0.506 0.489 0.495 0.548 0.653
    $\cdots$ $\cdots$ $\cdots$ $\cdots$ $\cdots$
    0.508 0.524 0.467 0.561 0.660
    0.523 0.498 0.426 0.548 0.673
    0.502 0.495 0.464 0.547 0.674
    60% 0.674 0.630 0.618 0.694 0.860
    0.652 0.634 0.633 0.716 0.827
    0.654 0.660 0.665 0.749 0.855
    $\cdots$ $\cdots$ $\cdots$ $\cdots$ $\cdots$
    0.696 0.643 0.585 0.729 0.847
    0.687 0.632 0.627 0.717 0.861
    0.650 0.654 0.644 0.732 0.861
    90% 0.793 0.749 0.761 0.861 0.916
    0.807 0.745 0.729 0.861 0.897
    0.794 0.800 0.750 0.861 0.900
    $\cdots$ $\cdots$ $\cdots$ $\cdots$ $\cdots$
    0.799 0.784 0.771 0.863 0.890
    0.775 0.780 0.706 0.860 0.894
    0.802 0.767 0.771 0.839 0.900
    下载: 导出CSV

    表  2  T-Drive数据集上各算法的预测准确性对比

    Table  2  Prediction accuracy comparison of several methods on T-Drive

    样本规模 MBM BNM RBM NNM UDTM
    30% 0.519 0.495 0.49 0.593 0.705
    0.511 0.513 0.444 0.596 0.699
    0.477 0.512 0.482 0.579 0.708
    $\cdots$ $\cdots$ $\cdots$ $\cdots$ $\cdots$
    0.520 0.510 0.467 0.586 0.719
    0.535 0.506 0.488 0.601 0.721
    0.521 0.505 0.480 0.594 0.702
    60% 0.691 0.659 0.620 0.780 0.898
    0.680 0.688 0.683 0.747 0.895
    0.673 0.675 0.634 0.767 0.889
    $\cdots$ $\cdots$ $\cdots$ $\cdots$ $\cdots$
    0.685 0.675 0.654 0.793 0.897
    0.675 0.681 0.660 0.772 0.879
    0.680 0.644 0.607 0.761 0.902
    90% 0.841 0.798 0.751 0.915 0.969
    0.805 0.779 0.761 0.879 0.944
    0.857 0.808 0.777 0.910 0.948
    $\cdots$ $\cdots$ $\cdots$ $\cdots$ $\cdots$
    0.839 0.823 0.694 0.893 0.963
    0.790 0.797 0.721 0.901 0.961
    0.804 0.786 0.740 0.888 0.961
    下载: 导出CSV
  • [1] Song C M, Qu Z H, Blumm N, Barabási A L. Limits of predictability in human mobility. Science, 2010, 327(5968):1018-1021 doi: 10.1126/science.1177170
    [2] Mamoulis N, Cao H P, Kollios G, Hadjieleftheriou M, Tao Y F, Cheung D W. Mining, indexing, and querying historical spatiotemporal data. In: Proceedings of the 10th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. Seattle, USA: ACM, 2004. 236-245
    [3] Morzy M. Mining frequent trajectories of moving objects for location prediction. In: Proceedings of the 5th International Conference on Machine Learning and Data Mining in Pattern Recognition. Leipzig, Germany: Springer, 2007. 667-680
    [4] Jeung H, Liu Q, Shen H T, Zhou X F. A hybrid prediction model for moving objects. In: Proceedings of the 24th International Conference on Data Engineering. Cancun, Mexico: IEEE, 2008. 70-79
    [5] Ying J J C, Lee W C, Weng T C, Tseng V S. Semantic trajectory mining for location prediction. In: Proceedings of the 19th ACM SIGSPATIAL International Conference on Advances in Geographic Information Systems. Chicago, USA: ACM, 2011. 34-43
    [6] Zheng Y, Zhang L Z, Xie X, Alma W Y. Mining interesting locations and travel sequences from GPS trajectories. In: Proceedings of the 18th International Conference on World Wide Web. Madrid, Spain: ACM, 2009. 791-800
    [7] Qiao S J, Shen D Y, Wang X T, Han N, Zhu W. A self-adaptive parameter selection trajectory prediction approach via hidden Markov models. IEEE Transactions on Intelligent Transportation Systems, 2015, 16(1):284-296 doi: 10.1109/TITS.6979
    [8] De Brébisson A, Simon É, Auvolat A, Vincent P, Bengio Y. Artificial neural networks applied to taxi destination prediction. In: Proceedings of the 2015 International Conference on ECML PKDD Discovery Challenge. Aachen, Germany: CEUR-WS.org, 2015. 40-51
    [9] Krumm J, Horvitz E. Predestination: inferring destinations from partial trajectories. In: Proceedings of the 8th International Conference on Ubiquitous Computing. Orange County, USA: Springer, 2006. 243-260
    [10] Ziebart B D, Maas A L, Dey A K, Bagnell J A. Navigate like a cabbie: probabilistic reasoning from observed context-aware behavior. In: Proceedings of the 10th International Conference on Ubiquitous computing. Seoul, Korea: ACM, 2008. 322-331
    [11] Patterson D J, Liao L, Fox D, Kautz H. Inferring high-level behavior from low-level sensors. In: Proceedings of the 5th International Conference on Ubiquitous Computing. Seattle, WA, USA: Springer, 2003. 73-89
    [12] Monreale A, Pinelli F, Trasarti R, Giannotti F. Wherenext: a location predictor on trajectory pattern mining. In: Proceedings of the 15th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. Paris, France: ACM, 2009. 637-646
    [13] Ashbrook D, Starner T. Using GPS to learn significant locations and predict movement across multiple users. Personal and Ubiquitous Computing, 2003, 7(5):275-286 doi: 10.1007/s00779-003-0240-0
    [14] Gambs S, Killijian M O, Del M N, Cortez P. Next place prediction using mobility markov chains. In: Proceedings of the 1st Workshop on Measurement, Privacy, and Mobility. Bern, Switzerland: ACM, 2012. Article No.3
    [15] 乔少杰, 金琨, 韩楠, 唐常杰, 格桑多吉, Gutierrez L A.一种基于高斯混合模型的轨迹预测算法.软件学报, 2015, 26(5):1048-1063 http://d.old.wanfangdata.com.cn/Periodical/rjxb201505005

    Qiao Shao-Jie, Jin Kun, Han Nan, Tang Chang-Jie, Gesangduoji, Gutierrez L A. Trajectory prediction algorithm based on Gaussian mixture model. Journal of Software, 2015, 26(5):1048-1063 http://d.old.wanfangdata.com.cn/Periodical/rjxb201505005
    [16] Besse P C, Guillouet B, Loubes J M, Royer F. Destination prediction by trajectory distribution based model. IEEE Transactions on Intelligent Transportation Systems, 2018, 19(8):2470-2481 doi: 10.1109/TITS.2017.2749413
    [17] Willard K E, Connelly D P. Nonparametric probability density estimation:improvements to the histogram for laboratory data. Computers and Biomedical Research, 1992, 25(1):17-28 https://linkinghub.elsevier.com/retrieve/pii/0010480992900326
    [18] 王星, 褚挺进.非参数统计(第2版).北京:清华大学出版社, 2014. 361.

    Wang Xing, Chu Ting-Jin. Non-parametric Statistics (2nd Edition). Beijing:Tsinghua press, 2014. 361
    [19] Yuan J, Zheng Y, Xie X, Sun G Z. Driving with knowledge from the physical world. In: Proceedings of the 17th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. New York, USA: ACM, 2011. 316-324
    [20] Ferrer G, Sanfeliu A. Bayesian human motion intentionality prediction in urban environments. Pattern Recognition Letters, 2014, 44:134-140 doi: 10.1016/j.patrec.2013.08.013
    [21] Bui D T, Tuan T A, Klempe H, Pradhan B, Revhaug I. Spatial prediction models for shallow landslide hazards:a comparative assessment of the efficacy of support vector machines, artificial neural networks, kernel logistic regression, and logistic model tree. Landslides, 2016, 13(2):361-378 doi: 10.1007/s10346-015-0557-6
  • 加载中
图(9) / 表(2)
计量
  • 文章访问数:  3260
  • HTML全文浏览量:  351
  • PDF下载量:  476
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-07-28
  • 录用日期:  2018-01-08
  • 刊出日期:  2019-04-20

目录

    /

    返回文章
    返回