2.845

2023影响因子

(CJCR)

  • 中文核心
  • EI
  • 中国科技核心
  • Scopus
  • CSCD
  • 英国科学文摘

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于连接自组织发育的稀疏跨越-侧抑制神经网络设计

杨刚 王乐 戴丽珍 杨辉

杨刚, 王乐, 戴丽珍, 杨辉. 基于连接自组织发育的稀疏跨越-侧抑制神经网络设计. 自动化学报, 2019, 45(4): 808-818. doi: 10.16383/j.aas.2018.c170374
引用本文: 杨刚, 王乐, 戴丽珍, 杨辉. 基于连接自组织发育的稀疏跨越-侧抑制神经网络设计. 自动化学报, 2019, 45(4): 808-818. doi: 10.16383/j.aas.2018.c170374
YANG Gang, WANG Le, DAI Li-Zhen, YANG Hui. Design of Sparse Span-lateral Inhibition Neural Network Based on Connection Self-organization Development. ACTA AUTOMATICA SINICA, 2019, 45(4): 808-818. doi: 10.16383/j.aas.2018.c170374
Citation: YANG Gang, WANG Le, DAI Li-Zhen, YANG Hui. Design of Sparse Span-lateral Inhibition Neural Network Based on Connection Self-organization Development. ACTA AUTOMATICA SINICA, 2019, 45(4): 808-818. doi: 10.16383/j.aas.2018.c170374

基于连接自组织发育的稀疏跨越-侧抑制神经网络设计

doi: 10.16383/j.aas.2018.c170374
基金项目: 

国家留学基金 201509795007

国家自然科学基金 61733005

江西省自然科学基金 20161BAB212054

国家自然科学基金 61663012

江西省教育厅科技项目 GJJ150490

国家自然科学基金 61673172

江西省交通运输厅科技项目 2014X0015

详细信息
    作者简介:

    杨刚  博士, 华东交通大学电气与自动化工程学院讲师.主要研究方向为复杂系统建模, 控制与优化, 神经计算理论及应用.E-mail:dr.hankyang@gmail.com

    王乐  华东交通大学电气与自动化工程学院硕士研究生.主要研究方向为计算智能及应用.E-mail:lonersome@126.com

    杨辉  博士, 华东交通大学电气与自动化工程学院教授.主要研究方向为复杂工业过程建模控制与优化, 轨道交通自动化与运行优化.E-mail:yhshuo@263.net

    通讯作者:

    戴丽珍  博士, 华东交通大学电气与自动化工程学院讲师.主要研究方向为计算智能方法, 认知机器人学.本文通信作者.E-mail:dr.alicedai@gmail.com

Design of Sparse Span-lateral Inhibition Neural Network Based on Connection Self-organization Development

Funds: 

China Scholarship Council 201509795007

National Natural Science Foundation of China 61733005

Natural Science Foundation of Jiangxi Province 20161BAB212054

National Natural Science Foundation of China 61663012

Scientific Technology Project of Jiangxi Provincial Department of Education GJJ150490

National Natural Science Foundation of China 61673172

Transport Department Science and Technology Foundation of Jiangxi Province 2014X0015

More Information
    Author Bio:

      Ph. D., lecturer at the School of Electrical and Automation Engineering, East China Jiaotong University. His research interest covers modelling, control and optimization of complex systems, and neural computation and applications

      Master student at the School of Electrical and Automation Engineering, East China Jiaotong University. His research interest covers computational intelligence and applications

      Ph. D., professor at the School of Electrical and Automation Engineering, East China Jiaotong University. His research interest covers complex industry process modelling, control and optimization, automation and optimization of rail system

    Corresponding author: DAI Li-Zhen   Ph. D., lecturer at the School of Electrical and Automation Engineering, East China Jiaotong University. Her research interest covers computational intelligence and cognition robotics. Corresponding author of this paper
  • 摘要: 针对跨越——侧抑制神经网络(Span-lateral inhibition neural network,S-LINN)的结构调整及参数学习问题,结合生物神经系统中神经元的稀疏连接特性,依据儿童及青少年智力发展水平与大脑皮层发育之间的相互关系,提出以小世界网络连接模式进行初始稀疏化的连接自组织发育稀疏跨越——侧抑制神经网络设计方法.定义网络连接稀疏度及神经元输出贡献率,设计网络连接增长——修剪规则,根据智力超常组皮层发育与智力水平的对应关系调整和控制网络连接权值,动态调整网络连接实现网络智力的自组织发育.通过非线性动力学系统辨识及函数逼近基准问题的求解,证明在同等连接复杂度的情况下,稀疏连接的跨越——侧抑制神经网络具有更好的泛化能力.
    1)  本文责任编委 王占山
  • 图  1  全连接网络及稀疏连接网络

    Fig.  1  Structural diagram of fully connected network and sparse connected network

    图  2  随机化重连

    Fig.  2  Random rewriting procedure

    图  3  皮层变化轨迹[31]

    Fig.  3  Trajectories of cortical change[31]

    图  4  sS-LINN结构示意图

    Fig.  4  Structural diagram of sS-LINN

    图  5  CaseA:网络测试输出及学习误差曲线

    Fig.  5  CaseA: Network output for test samples and the learning error curve

    图  6  CaseB:网络测试输出及学习误差曲线

    Fig.  6  CaseB: Network output for test samples and the learning error curve

    图  7  CaseC:网络测试输出及学习误差曲线

    Fig.  7  CaseC: Network output for test samples and the learning error curve

    图  8  三次独立实验中前200次迭代中网络性能对比

    Fig.  8  The comparison of network performance for the 3 independent runs (the first 200 iterations)

    图  9  sin C函数逼近结果

    Fig.  9  Simulation result of sin C function approximation

    表  1  三次独立实验中网络性能及其权值连接变化情况

    Table  1  Network performance and the dynamic adjustment process of connected weight

    Method
    (# Total connections)
    Training
    MSE
    Training
    RMSE
    Testing
    MSE
    Testing
    RMSE
    CaseA: 43-50-39 2.06 $\times 10^{-5}$ 0.0045 1.96 $\times 10^{-5}$ 0.0044
    CaseB: 43-51-39 1.05 $\times 10^{-5}$ 0.0032 4.01 $\times 10^{-5}$ 0.0063
    CaseC: 43-51-38 4.88 $\times 10^{-6}$ 0.0022 3.67 $\times 10^{-6}$ 0.0019
    下载: 导出CSV

    表  2  sS-LINN与其他神经网络方法的性能对比

    Table  2  Network performance and the dynamic adjustment process of connected weight

    Method # Hidden neurons /connections Testing MSE
    Standard RBF[34] / 0.695
    Standard SVR[33] / 0.445
    SVR with prior knowledge[33] / 0.354
    LCRBF[34] / 0.273
    CP-NN[35] $2\to9$ 1.25 $\times 10^{-4}$
    $20\to 10$ 1.04 $\times 10^{-4}$
    AGPNNC[35] $2\to 10$ 1.71 $\times 10^{-4}$
    $20\to10$ 1.23 $\times 10^{-4}$
    S-LINN[25] 8 3.82 $\times 10^{-5}$
    sS-LINN 39个连接权值 2.01 $\times 10^{-5}$
    下载: 导出CSV

    表  3  sin C函数逼近结果与其他方法的性能对比

    Table  3  Performance comparison of sin C function approximation

    Method TrainingRMSE TestingRMSE
    Sparse optimization[37] 0.0662 0.0139
    BP[6] 0.0582 0.0757
    WDBP[6] 0.0347 0.0464
    SGLBP[6] 0.0191 0.0280
    S-LINN[25] 0.0137 0.0141
    sS-LINN 0.0102 0.0113
    下载: 导出CSV
  • [1] Braitenberg V. Cortical architectonics:general and areal. Architectonics of the Cerebral Cortex. New York, USA:Raven Press, 1978. 443-465
    [2] Paschke P, Möller R. Simulation of sparse random networks on a CNAPS SIMD neurocomputer. Neuromorphic Systems:Engineering Silicon from Neurobiology. Singapore:Scientific Press, 1998. 251-260
    [3] Liu D R, Michel A N. Robustness analysis and design of a class of neural networks with sparse interconnecting structure. Neurocomputing, 1996, 12(1):59-76 doi: 10.1016/0925-2312(95)00040-2
    [4] Gripon V, Berrou C. Sparse neural networks with large learning diversity. IEEE Transactions on Neural Networks, 2011, 22(7):1087-1096 doi: 10.1109/TNN.2011.2146789
    [5] Guo Z X, Wong W K, Li M. Sparsely connected neural network-based time series forecasting. Information Sciences, 2012, 193:54-71 doi: 10.1016/j.ins.2012.01.011
    [6] Wang J, Cai Q L, Chang Q Q, Zurada J M. Convergence analyses on sparse feedforward neural networks via group lasso regularization. Information Sciences, 2017, 381:250-269 doi: 10.1016/j.ins.2016.11.020
    [7] Watts D J, Strogatz S H. Collective dynamics of "Small-World" networks. Nature, 1998, 393(6684):440-442 doi: 10.1038/30918
    [8] Sporns O, Zwi J D. The small world of the cerebral cortex. Neuroinformatics, 2004, 2(2):145-162 doi: 10.1385/NI:2:2
    [9] Bassett D S, Bullmore E. Small-world brain networks. The Neuroscientist, 2006, 12(6):512-523 doi: 10.1177/1073858406293182
    [10] Ahn Y Y, Jeong H, Kim B J. Wiring cost in the organization of a biological neuronal network. Physica A:Statistical Mechanics and Its Applications, 2006, 367:531-537 doi: 10.1016/j.physa.2005.12.013
    [11] Zheng P S, Tang W S, Zhang J X. A Simple method for designing efficient small-world neural networks. Neural Networks, 2010, 23(2):155-159
    [12] Simard D, Nadeau L, Kröger H. Fastest learning in small-world neural networks. Physics Letters A, 2005, 336(1):8-15 doi: 10.1016/j.physleta.2004.12.078
    [13] Lago-Fernández L F, Huerta R, Corbacho F, Sigüenza J A. Fast response and temporal coherent oscillations in small-world networks. Physical Review Letters, 2000, 84(12):2758-2761 doi: 10.1103/PhysRevLett.84.2758
    [14] Morelli L G, Abramson G, Kuperman M N. Associative memory on a small-world neural network. The European Physical Journal B—Condensed Matter and Complex Systems, 2004, 38(3):495-500
    [15] 王爽心, 杨成慧.基于层连优化的新型小世界神经网络.控制与决策, 2014, 29(1):77-82 http://d.old.wanfangdata.com.cn/Periodical/kzyjc201401012

    Wang Shuang-Xin, Yang Cheng-Hui. Novel small-world neural network based on topology optimization. Control and Decision, 2014, 29(1):77-82 http://d.old.wanfangdata.com.cn/Periodical/kzyjc201401012
    [16] 伦淑娴, 林健, 姚显双.基于小世界回声状态网的时间序列预测.自动化学报, 2015, 41(9):1669-1679 http://www.aas.net.cn/CN/abstract/abstract18740.shtml

    Lun Shu-Xian, Lin Jian, Yao Xian-Shuang. Time series prediction with an improved echo state network using small world network. Acta Automatica Sinica, 2015, 41(9):1669-1679 http://www.aas.net.cn/CN/abstract/abstract18740.shtml
    [17] Erkaymaz O, Ozer M, Perc M. Performance of small-world feedforward neural networks for the diagnosis of diabetes. Applied Mathematics and Computation, 2017, 311:22-28 doi: 10.1016/j.amc.2017.05.010
    [18] Peters A, Sethares C. Organization of pyramidal neurons in area 17 of monkey visual cortex. The Journal of Comparative Neurology, 1991, 306(1):1-23 doi: 10.1002/cne.903060102
    [19] Markram H, Toledo-Rodriguez M, Wang Y, Gupta A, Silberberg G, Wu C Z. Interneurons of the neocortical inhibitory system. Nature Reviews Neuroscience, 2004, 5(10):793-807 doi: 10.1038/nrn1519
    [20] Mountcastle V B. The columnar organization of the neocortex. Brain, 1997, 120(4):701-722 doi: 10.1093/brain/120.4.701
    [21] Hubel D H, Wiesel T N. Sequence regularity and geometry of orientation columns in the monkey striate cortex. The Journal of Comparative Neurology, 1974, 158(3):267-293 doi: 10.1002-cne.901580304/
    [22] Lübke J, Feldmeyer D. Excitatory signal flow and connectivity in a cortical column:focus on barrel cortex. Brain Structure and Function, 2007, 212(1):3-17 doi: 10.1007/s00429-007-0144-2
    [23] Buxhoeveden D P, Casanova M F. The minicolumn hypothesis in neuroscience. Brain, 2002, 125(5):935-951 doi: 10.1093/brain/awf110
    [24] Rockland K S, Ichinohe N. Some Thoughts on cortical minicolumns. Experimental Brain Research, 2004, 158(3):265-277 doi: 10.1007%2Fs00221-004-2024-9
    [25] 杨刚, 乔俊飞, 薄迎春, 韩红桂.一种基于大脑皮层结构的侧抑制神经网络.控制与决策, 2013, 28(11):1702-1706 http://d.old.wanfangdata.com.cn/Periodical/kzyjc201311017

    Yang Gang, Qiao Jun-Fei, Bo Ying-Chun, Han Hong-Gui. A lateral inhibition neural network based on neocortex topology. Control and Decision, 2013, 28(11):1702-1706 http://d.old.wanfangdata.com.cn/Periodical/kzyjc201311017
    [26] Yang G, Qiao J F. A fast and efficient two-phase sequential learning algorithm for spatial architecture neural network. Applied Soft Computing, 2014, 25:129-138 doi: 10.1016/j.asoc.2014.09.012
    [27] Fiesler E. Comparative bibliography of ontogenic neural networks. In:Proceedings of the 1994 International Conference on Artificial Neural Networks. Sorrento, Italy:Springer, 1994. 793-796
    [28] Elizondao D, Fiesler E, Korczak J. Non-ontogenic sparse neural networks. In:Proceedings of the 1995 IEEE International Conference on Neural Networks. Perth, WA, Australia:IEEE, 1995. 290-295
    [29] Newman M E J, Watts D J. Renormalization group analysis of the small-world network model. Physics Letters A, 1999, 263(4-6):341-346 doi: 10.1016/S0375-9601(99)00757-4
    [30] 王波, 王万良, 杨旭华. WS与NW两种小世界网络模型的建模及仿真研究.浙江工业大学学报, 2009, 37(2):179-182, 189 doi: 10.3969/j.issn.1006-4303.2009.02.014

    Wang Bo, Wang Wan-Liang, Yang Xu-Hua. Research of modeling and simulation on WS and NW small-world network model. Journal of Zhejiang University of Technology, 2009, 37(2):179-182, 189 doi: 10.3969/j.issn.1006-4303.2009.02.014
    [31] Shaw P, Greenstein D, Lerch J, Clasen L, Lenroot R, Gogtay N, Evans A, Rapoport J, Giedd J. Intellectual ability and cortical development in children and adolescents. Nature, 2006, 440(7084):676-679 doi: 10.1038/nature04513
    [32] Leng G, McGinnity T M, Prasad G. Design for self-organizing fuzzy neural networks based on genetic algorithms. IEEE Transactions on Fuzzy Systems, 2006, 14(6):755-766 doi: 10.1109/TFUZZ.2006.877361
    [33] Lauer F, Bloch G. Incorporating prior knowledge in support vector regression. Machine Learning, 2008, 70(1):89-118
    [34] Qu Y J, Hu B G. RBF networks for nonlinear models subject to linear constraints. In:Proceedings of the 2009 IEEE International Conference on Granular Computing. Nanchang, China:IEEE, 2009. 482-487
    [35] Han H G, Qiao J F. A structure optimisation algorithm for feedforward neural network construction. Neurocomputing, 2013, 99:347-357 doi: 10.1016/j.neucom.2012.07.023
    [36] Narendra K S, Parthasarathy K. Identification and control of dynamical systems using neural networks. IEEE Transactions on Neural Networks, 1990, 1(1):4-27 http://d.old.wanfangdata.com.cn/OAPaper/oai_doaj-articles_89fcbba67ed6200b6b18dc26ecde7431
    [37] Manngard M, Kronqvist J, Böling J M. Structural learning in artificial neural networks using sparse optimization. Neurocomputing, 2018, 272:660-667 doi: 10.1016/j.neucom.2017.07.028
  • 加载中
图(9) / 表(3)
计量
  • 文章访问数:  2469
  • HTML全文浏览量:  346
  • PDF下载量:  416
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-07-07
  • 录用日期:  2017-10-30
  • 刊出日期:  2019-04-20

目录

    /

    返回文章
    返回