2.845

2023影响因子

(CJCR)

  • 中文核心
  • EI
  • 中国科技核心
  • Scopus
  • CSCD
  • 英国科学文摘

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

混合选别浓密过程双速率智能切换控制

王琳岩 李健 贾瑶 柴天佑

王琳岩, 李健, 贾瑶, 柴天佑. 混合选别浓密过程双速率智能切换控制. 自动化学报, 2018, 44(2): 330-343. doi: 10.16383/j.aas.2018.c160590
引用本文: 王琳岩, 李健, 贾瑶, 柴天佑. 混合选别浓密过程双速率智能切换控制. 自动化学报, 2018, 44(2): 330-343. doi: 10.16383/j.aas.2018.c160590
WANG Lin-Yan, LI Jian, JIA Yao, CHAI Tian-You. Dual-rate Intelligent Switching Control for Mixed Separation Thickening Process. ACTA AUTOMATICA SINICA, 2018, 44(2): 330-343. doi: 10.16383/j.aas.2018.c160590
Citation: WANG Lin-Yan, LI Jian, JIA Yao, CHAI Tian-You. Dual-rate Intelligent Switching Control for Mixed Separation Thickening Process. ACTA AUTOMATICA SINICA, 2018, 44(2): 330-343. doi: 10.16383/j.aas.2018.c160590

混合选别浓密过程双速率智能切换控制

doi: 10.16383/j.aas.2018.c160590
基金项目: 

中国博士后科学基金 2015M581355

国家高技术研究发展计划(863计划) SQ2015AA0400561

国家自然科学基金 61603393

详细信息
    作者简介:

    王琳岩  流程工业综合自动化国家重点实验室硕士研究生.主要研究方向为智能串级控制理论.E-mail:wanglinyan6001@outlook.com

    贾瑶  流程工业综合自动化国家重点实验室博士研究生.主要研究方向为复杂工业过程控制理论及技术.E-mail:jiayao_neu@163.com

    柴天佑  中国工程院院士, 东北大学教授.IEEE Fellow, IFAC Fellow, 欧亚科学院院士.主要研究方向为自适应控制, 智能解耦控制, 流程工业综合自动化理论, 方法与技术.E-mail:tychai@mail.neu.edu.cn

    通讯作者:

    李健  流程工业综合自动化国家重点实验室助理研究员.主要研究方向为流程工业综合自动化系统技术.本文通信作者.E-mail:lijian@mail.neu.edu.cn

Dual-rate Intelligent Switching Control for Mixed Separation Thickening Process

Funds: 

China Postdoctoral Science Foundation 2015M581355

National High Technology Research and Development Program of China (863 Program) SQ2015AA0400561

National Natural Science Foundation of China 61603393

More Information
    Author Bio:

     Master student at the State Key Laboratory of Synthetical Automation for Process Industries. Her main research interest is intelligent cascade control theory

     Ph. D. candidate at the State Key Laboratory of Synthetical Automation for Process Industries. His research interest covers process control theory and technology for complex industry process

     Academician of Chinese Academy of Engineering, professor at Northeastern University, IEEE Fellow, IFAC Fellow, and academician of the International Eurasian Academy of Sciences. His research interest covers adaptive control, intelligent decoupling control, as well as theories, methods and technology of integrated automation of process industry

    Corresponding author: LI Jian  Research assistant at the State Key Laboratory of Synthetical Automation for Process Industries. His research interest covers technology for intergrated automation system of industrial process. Corresponding author of this paper
  • 摘要: 赤铁矿混合选别浓密过程是以底流矿浆泵频率为输入,以底流矿浆流量为内环输出,以底流矿浆浓度为外环输出的强非线性串级工业过程.由于受到频繁的浮选过程产生的中矿矿浆和污水的随机干扰,底流矿浆浓度外环和流量内环始终处于动态变化之中,控制器积分作用失效,内外环相互影响,使被控系统的动态性能变坏,底流矿浆浓度与流量超出工艺规定的控制目标的范围,甚至产生谐振.本文针对上述问题利用提升技术建立基于内环流量闭环动态模型的浓度外环动态模型,将基于未建模动态补偿驱动的一步最优PI控制和基于模糊推理与规则推理的切换控制相结合,提出了由浓度外环控制和流量内环控制组成的混合选别浓密过程的双速率智能切换控制算法,建立了由机理主模型和神经网络补偿模型组成的混合选别浓密过程动态模型.所提算法通过混合选别浓密过程的半实物仿真实验结果表明本文所提控制方法的有效性.
    1)  本文责任编委 谢永芳
  • 图  1  混合选别浓密过程

    Fig.  1  The mixed separation thickening process

    图  2  混合选别浓密过程双速率智能切换控制结构图

    Fig.  2  The dual-rate intelligent switching control structure for MSTP

    图  3  流量设定智能切换控制结构图

    Fig.  3  The structure of intelligent switching control algorithm for flow-rate

    图  4  未建模动态补偿的控制结构图

    Fig.  4  Structure of unmodeled dynamic compensation control

    图  5  底流流量设定补偿算法结构图

    Fig.  5  The structure of underflow flow-rate setting compensation algorithm

    图  6  $\bar{E}_1(T)$和$\bar{E}_2(T)$的隶属度函数

    Fig.  6  The membership function of $\bar{E}_1(T)$ and $\bar{E}_2(T)$

    图  7  $\bar{U}_i$的隶属度函数

    Fig.  7  The membership function of $\bar{U}_i$

    图  8  半实物仿真混合选别浓密系统硬件平台

    Fig.  8  Hardware platform for hardware-in-loop simulation of MSTP

    图  9  混合选别浓密过程模型对象估计效果

    Fig.  9  The estimation performance of MSTP model

    图  10  中矿矿浆干扰$r_1$和污水干扰$r_2$曲线

    Fig.  10  Flotation middling and sewage interference $r_1$ and $r_2$

    图  11  采用本文提出的控制方法和采用文献[8]控制方法时的对比运行曲线

    Fig.  11  The contrast curves with the control method proposed in this paper and in [8]

    表  1  底流矿浆流量设定补偿量$\bar{U}_i$模糊规则表

    Table  1  Pulp flow-rate set compensation $\bar{U}_i$ fuzzy rule table

    $\bar{U}_i$ $E_{1j}$
    $NB$ $NM$ $NS$ $ZE$ $PS$ $PM$ $PB$
    $E_{2j}$ $NB$ $ZE$ $PS$ $PS$ $PM$ $PM$ $PB$ $PB$
    $NM$ $NS$ $ZE$ $PS$ $PS$ $PM$ $PM$ $PB$
    $NS$ $NS$ $NS$ $ZE$ $ZE$ $PS$ $PM$ $PM$
    $ZE$ $NM$ $NS$ $NS$ $ZE$ $PS$ $PS$ $PM$
    $PS$ $NM$ $NM$ $NS$ $ZE$ $ZE$ $PS$ $PS$
    $PM$ $NB$ $NM$ $NM$ $NS$ $NS$ $ZE$ $PS$
    $PB$ $NB$ $NB$ $NM$ $NM$ $NS$ $NS$ $ZE$
    下载: 导出CSV

    表  2  采用本文控制方法与文献[8]控制方法控制时底流矿浆浓度$y_2$的控制器性能评价表(%)

    Table  2  Control performance assessment of USD $y_2$ with the proposed method and the method in [8] (%)

    $y_2$ 超过区间最大值 超过区间绝对累积和
    本文 0.0 0.0
    文献[8] 0.880 2.703
    下载: 导出CSV

    表  3  采用本文控制方法与文献[8]控制方法控制时底流矿浆流量$y_1$的控制器性能评价表(m$^3$/h)

    Table  3  Control performance assessment of USF $y_1$ (with the proposed method and the method in [8] (m$^3$/h)

    $y_1$ 超过区间最大值 超过区间绝对累积和
    本文 0.0 0.0
    文献[8] 18.771 421.589
    下载: 导出CSV

    表  4  采用本文控制方法与文献[8]控制方法控制时底流矿浆流量变化率$\Delta y_1$的控制器性能评价表(m$^3$/h)

    Table  4  Control performance assessment of $\Delta y_1$ with the proposed method and the method in [8] (m$^3$/h)

    $y_1$ 超过区间最大值 超过区间绝对累积和
    本文 0.0 0.0
    文献[8] 4.578 114.120
    下载: 导出CSV
  • [1] Betancourt F, Bürger R, Diehl S, Farås S. Modeling and controlling clarifier-thickeners fed by suspensions with time-dependent properties. Minerals Engineering, 2014, 62:91-101 doi: 10.1016/j.mineng.2013.12.011
    [2] Diehl S. A regulator for continuous sedimentation in ideal clarifier-thickener units. Journal of Engineering Mathematics, 2008, 60 (3-4):265-291 doi: 10.1007/s10665-007-9149-3
    [3] Segovia J P, Concha F, Sbarbaro D. On the control of sludge level and underflow concentration in industrial thickeners. In: Proceedings of the 18th IFAC World Congress. Milano, Italy: IFAC, 2011. 8571-8576
    [4] Sidrak Y L. Control of the thickener operation in alumina production. Control Engineering Practice, 1997, 5 (10):1417-1426 doi: 10.1016/S0967-0661(97)00138-X
    [5] Shean B J, Cilliers J J. A Review of froth flotation control. International Journal of Mineral Processing, 2011, 100 (3-4):57-71 doi: 10.1016/j.minpro.2011.05.002
    [6] Park H, Wang L G. Experimental studies and modeling of surface bubble behaviour in froth flotation. Chemical Engineering Research and Design, 2015, 101:98-106 doi: 10.1016/j.cherd.2015.04.021
    [7] 李海波, 柴天佑, 赵大勇.混合选别浓密机底流矿浆浓度和流量区间智能切换控方法.自动化学报, 2013, 40 (9):1967-1975 http://www.aas.net.cn/CN/abstract/abstract18467.shtml

    Li Hai-Bo, Chai Tian-You, Zhao Da-Yong. Intelligent switching control of underflow slurry concentration and flowrate intervals in mixed separation thickener. Acta Automatica Sinica, 2014, 40 (9):1967-1975 http://www.aas.net.cn/CN/abstract/abstract18467.shtml
    [8] Chai T Y, Jia Y, Li H B, Wang H. An intelligent switching control for a mixed separation thickener process. Control Engineering Practice, 2016, 57:61-71 doi: 10.1016/j.conengprac.2016.07.007
    [9] 金以慧.过程控制.北京:清华大学出版社, 1993.

    Jin Yi-Hui. The Process Control. Beijing:Tsinghua University Press, 1993.
    [10] Chai T Y, Zhao L, Qiu J B, Liu F Z, Fan J L. Integrated network-based model predictive control for setpoints compensation in industrial processes. IEEE Transactions on Industrial Informatics, 2013, 9 (1):417-426 doi: 10.1109/TII.2012.2217750
    [11] 陈敏恒, 丛德滋, 方图南, 齐鸣斋.化工原理.北京:化学工业出版社, 2014.

    Chen Min-Heng, Cong De-Zi, Fang Tu-Nan, Qi Ming-Zhai. Chemical Engineering. Beijing:Chemical Industry Press, 2014.
    [12] Kim B H, Klima M S. Development and application of a dynamic model for hindered-settling column separations. Minerals Engineering, 2004, 17 (3):403-410 doi: 10.1016/j.mineng.2003.11.013
    [13] Zheng Y Y. Mathematical Mode of Anaerobic Processes Applied to the Anaerobic Sequencing Batch Reactor[Ph. D. dissertation], University of Toronto, Canada, 2003
    [14] Chai T Y, Zhang Y J, Wang H, Su C Y, Sun J. Data-based virtual unmodeled dynamics driven multivariable nonlinear adaptive switching control. IEEE Transactions on Neural Networks, 2011, 22 (12):2154-2172 doi: 10.1109/TNN.2011.2167685
    [15] Fileti A M F, Antunes A J B, Silva F V, Silveira J, Pereira J A F R. Experimental investigations on fuzzy logic for process control. Control Engineering Practice, 2007, 15 (9):1149-1160 doi: 10.1016/j.conengprac.2007.01.009
    [16] Zheng J M, Zhao S D, Wei S G. Application of self-tuning fuzzy PID controller for a SRM direct drive volume control hydraulic press. Control Engineering Practice, 2009, 17 (12):1398-1404 doi: 10.1016/j.conengprac.2009.07.001
    [17] Precup R E, Hellendoorn H. A survey on industrial applications of fuzzy control. Computers in Industry, 2011, 62 (3):213-226 doi: 10.1016/j.compind.2010.10.001
    [18] Hägglund T. A control-loop performance monitor. Control Engineering Practice, 1995, 3 (11):1543-1551 doi: 10.1016/0967-0661(95)00164-P
    [19] Lin S C, Tseng S S, Teng C W. Dynamic EMCUD for knowledge acquisition. Expert Systems with Applications, 2008, 34 (2):833-844 doi: 10.1016/j.eswa.2006.10.041
    [20] Khargonekar P P, Poolla K, Tannenbaum A. Robust control of linear time-invariant plants using periodic compensation. IEEE Transactions on Automatic Control, 1985, 30 (11):1088-1096 doi: 10.1109/TAC.1985.1103841
    [21] Armstrong J S, Collopy F. Error measures for generalizing about forecasting methods:empirical comparisons. International Journal of Forecasting, 1992, 8 (1):69-80 doi: 10.1016/0169-2070(92)90008-W
    [22] 唐耀庚, 胡蓉.基于神经网络的矿浆浓度控制系统.控制工程, 2002, 9(5):45-46, 91 http://kns.cnki.net/KCMS/detail/detail.aspx?filename=jzdf200205014&dbname=CJFD&dbcode=CJFQ

    Tang Yao-Geng, Hu Rong. Neural network PID control system of the pulp consistency. Control Engineering of China, 2002, 9 (5):45-46, 91 http://kns.cnki.net/KCMS/detail/detail.aspx?filename=jzdf200205014&dbname=CJFD&dbcode=CJFQ
    [23] Ogata K. Discrete-Time Control Systems. Englewood Cliffs, NJ: Prentice Hall, 1994.
    [24] Lequin O, Gevers M, Mossberg M, Bosmans M, Bosmans E, Triest L. Iterative feedback tuning of PID parameters:comparison with classical tuning rules. Control Engineering Practice, 2003, 11 (9):1023-1033 doi: 10.1016/S0967-0661(02)00303-9
  • 加载中
图(11) / 表(4)
计量
  • 文章访问数:  2417
  • HTML全文浏览量:  358
  • PDF下载量:  692
  • 被引次数: 0
出版历程
  • 收稿日期:  2016-08-16
  • 录用日期:  2017-02-15
  • 刊出日期:  2018-02-20

目录

    /

    返回文章
    返回