2.845

2023影响因子

(CJCR)

  • 中文核心
  • EI
  • 中国科技核心
  • Scopus
  • CSCD
  • 英国科学文摘

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

有向图中基于扰动观测器的线性多智能体系统一致性

杨东岳 梅杰

杨东岳, 梅杰. 有向图中基于扰动观测器的线性多智能体系统一致性. 自动化学报, 2018, 44(6): 1037-1044. doi: 10.16383/j.aas.2017.c160747
引用本文: 杨东岳, 梅杰. 有向图中基于扰动观测器的线性多智能体系统一致性. 自动化学报, 2018, 44(6): 1037-1044. doi: 10.16383/j.aas.2017.c160747
YANG Dong-Yue, MEI Jie. Disturbance Observer Based Consensus of Linear Multi-agent Systems Under a Directed Graph. ACTA AUTOMATICA SINICA, 2018, 44(6): 1037-1044. doi: 10.16383/j.aas.2017.c160747
Citation: YANG Dong-Yue, MEI Jie. Disturbance Observer Based Consensus of Linear Multi-agent Systems Under a Directed Graph. ACTA AUTOMATICA SINICA, 2018, 44(6): 1037-1044. doi: 10.16383/j.aas.2017.c160747

有向图中基于扰动观测器的线性多智能体系统一致性

doi: 10.16383/j.aas.2017.c160747
基金项目: 

深圳市基础研究计划 JCYJ20160505175231531

国家自然科学基金 61403094

详细信息
    作者简介:

    杨东岳  哈尔滨工业大学(深圳)机电工程与自动化学院硕士研究生.2015年获得哈尔滨工业大学自动化专业学士学位.主要研究方向为线性多智能体系统的协调控制.E-mail:yueame333@126.com

    通讯作者:

    梅杰  哈尔滨工业大学(深圳)机电工程与自动化学院副教授.主要研究方向为多智能体系统分布式控制及其在编队飞行器中的应用.本文通信作者.E-mail:jmei@hit.edu.cn

Disturbance Observer Based Consensus of Linear Multi-agent Systems Under a Directed Graph

Funds: 

the Foundation Research Project of Shenzhen JCYJ20160505175231531

National Natural Science Foundation of China 61403094

More Information
    Author Bio:

    Master student at the School of Mechanical Engineering and Automation, Harbin Institute of Technology, Shenzhen. He received his bachelor degree in automation from Harbin Institute of Technology in 2015. His main research interest is coordination of linear multiagent systems

    Corresponding author: MEI Jie Associate professor at the School of Mechanical Engineering and Automation, Harbin Institute of Technology, Shenzhen. His research interest covers distributed control of multi-agent systems and its application in formation flying. Corresponding author of this paper
  • 摘要: 在有向图中,针对多智能体系统中智能体动力学存在扰动的情形,研究了系统的一致性问题.每个智能体的动力学模型为存在未知外部扰动的一般线性系统.在有向图是强连通的条件下,通过设计一种基于扰动观测器的分布式算法,实现了存在未知扰动的线性多智能体系统的一致性.最后通过仿真验证所提算法的有效性.
    1)  本文责任编委 吕金虎
  • 图  1  扰动观测器结构

    Fig.  1  The structure of disturbance observer

    图  2  UAV纵向控制时的速度状态轨线

    Fig.  2  Speed of UAV longitudinal control

    图  3  UAV纵向控制时的攻角状态轨线

    Fig.  3  Angle of attack of UAV longitudinal control

    图  4  UAV纵向控制时的俯仰率状态轨线

    Fig.  4  Pitch rate of UAV longitudinal control

    图  5  UAV纵向控制时的俯仰角状态轨线

    Fig.  5  Pitch of UAV longitudinal control

    图  6  无人机受到的不同扰动

    Fig.  6  Different disturbances for UAVs

  • [1] 闵海波, 刘源, 王仕成, 孙富春.多个体协调控制问题综述.自动化学报, 2012, 38(10):1557-1570 http://www.aas.net.cn/CN/abstract/abstract17765.shtml

    Min Hai-Bo, Liu Yuan, Wang Shi-Cheng, Sun Fu-Chun. An overview on coordination control problem of multi-agent system. Acta Automatica Sinica, 2012, 38(10):1557-1570 http://www.aas.net.cn/CN/abstract/abstract17765.shtml
    [2] Olfati-Saber R, Fax J A, Murray R M. Consensus and cooperation in networked multi-agent systems. Proceedings of the IEEE, 2007, 95(1):215-233 doi: 10.1109/JPROC.2006.887293
    [3] Ren W, Beard R W, Atkins E M. Information consensus in multivehicle cooperative control. IEEE Control Systems Magazine, 2007, 27(2):71-82 doi: 10.1109/MCS.2007.338264
    [4] Oh K K, Park M C, Ahn H S. A survey of multi-agent formation control. Automatica, 2015, 53:424-440 doi: 10.1016/j.automatica.2014.10.022
    [5] Fax J A, Murray R M. Information flow and cooperative control of vehicle formations. IEEE Transactions on Automatic Control, 2004, 49(9):1465-1476 doi: 10.1109/TAC.2004.834433
    [6] Olfati-Saber R. Flocking for multi-agent dynamic systems:algorithms and theory. IEEE Transactions on Automatic Control, 2006, 51(3):401-420 doi: 10.1109/TAC.2005.864190
    [7] Su H S, Wang X F, Lin Z L. Flocking of multi-agents with a virtual leader. IEEE Transactions on Automatic Control, 2009, 54(2):293-307 doi: 10.1109/TAC.2008.2010897
    [8] Yu W W, Chen G R, Gao M, Kurths J. Second-order consensus for multiagent systems with directed topologies and nonlinear dynamics. IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics), 2010, 40(3):881-891 doi: 10.1109/TSMCB.2009.2031624
    [9] Mei J, Ren W, Chen J. Distributed consensus of second-order multi-agent systems with heterogeneous unknown inertias and control gains under a directed graph. IEEE Transactions on Automatic Control, 2016, 61(8):2019-2034 doi: 10.1109/TAC.2015.2480336
    [10] Wang C R, Wang X H, Ji H B. Leader-following consensus for an integrator-type nonlinear multi-agent systems using distributed adaptive protocol. In: Proceedings of the 10th IEEE International Conference on Control and Automation (ICCA). Hangzhou, China: IEEE, 2013. 1166-1171 http://ieeexplore.ieee.org/document/6564881/
    [11] Yu W W, Chen G R, Cao M. Some necessary and sufficient conditions for second-order consensus in multi-agent dynamical systems. Automatica, 2010, 46(6):1089-1095 doi: 10.1016/j.automatica.2010.03.006
    [12] 梅杰, 张海博, 马广富.有向图中网络Euler-Lagrange系统的自适应协调跟踪.自动化学报, 2011, 37(5):596-603 http://www.aas.net.cn/CN/abstract/abstract17395.shtml

    Mei Jie, Zhang Hai-Bo, Ma Guang-Fu. Adaptive coordinated tracking for networked Euler-Lagrange systems under a directed graph. Acta Automatica Sinica, 2011, 37(5):596-603 http://www.aas.net.cn/CN/abstract/abstract17395.shtml
    [13] Tuna S E. Synchronizing linear systems via partial-state coupling. Automatica, 2008, 44(8):2179-2184 doi: 10.1016/j.automatica.2008.01.004
    [14] Scardovi L, Sepulchre R. Synchronization in networks of identical linear systems. Automatica, 2009, 45(11):2557-2562 doi: 10.1016/j.automatica.2009.07.006
    [15] Li Z K, Duan Z S, Chen G R, Huang L. Consensus of multiagent systems and synchronization of complex networks:a unified viewpoint. IEEE Transactions on Circuits and Systems I:Regular Papers, 2010, 57(1):213-224 doi: 10.1109/TCSI.2009.2023937
    [16] Ma C Q, Zhang J F. Necessary and sufficient conditions for consensusability of linear multi-agent systems. IEEE Transactions on Automatic Control, 2010, 55(5):1263-1268 doi: 10.1109/TAC.2010.2042764
    [17] Li Z, Duan Z, Chen G. Dynamic consensus of linear multi-agent systems. IET Control Theory & Applications, 2011, 5(1):19-28 https://www.researchgate.net/publication/224216882_Dynamic_consensus_of_linear_multi-agent_systems
    [18] Zhang H W, Lewis F L, Das A. Optimal design for synchronization of cooperative systems:state feedback, observer and output feedback. IEEE Transactions on Automatic Control, 2011, 56(8):1948-1952 doi: 10.1109/TAC.2011.2139510
    [19] Mei J, Ren W, Chen J, Anderson B D O. Consensus of linear multi-agent systems with fully distributed control gains under a general directed graph. In: Proceedings of the 53rd Annual Conference on Decision and Control (CDC). Los Angeles, CA, USA: IEEE, 2014. 2993-2998 http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=7039849
    [20] Francis B A. The linear multivariable regulator problem. SIAM Journal on Control and Optimization, 1977, 15(3):486-505 doi: 10.1137/0315033
    [21] Ding Z T. Asymptotic rejection of general periodic disturbances in output-feedback nonlinear systems. IEEE Transactions on Automatic Control, 2006, 51(2):303-308 doi: 10.1109/TAC.2005.863523
    [22] Xiang J, Wei W, Li Y J. Synchronized output regulation of linear networked systems. IEEE Transactions on Automatic Control, 2009, 54(6):1336-1341 doi: 10.1109/TAC.2009.2015546
    [23] Su Y F, Huang J. Cooperative output regulation with application to multi-agent consensus under switching network. IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics), 2012, 42(3):864-875 doi: 10.1109/TSMCB.2011.2179981
    [24] Andreasson M, Dimarogonas D V, Sandberg H, Johansson K H. Distributed control of networked dynamical systems:static feedback, integral action and consensus. IEEE Transactions on Automatic Control, 2014, 59(7):1750-1764 doi: 10.1109/TAC.2014.2309281
    [25] Lombana D A B, di Bernardo M. Multiplex PI control for consensus in networks of heterogeneous linear agents. Automatica, 2016, 67:310-320 doi: 10.1016/j.automatica.2016.01.039
    [26] Yang H Y, Zhang Z X, Zhang S Y. Consensus of second-order multi-agent systems with exogenous disturbances. International Journal of Robust and Nonlinear Control, 2011, 21(9):945-956 doi: 10.1002/rnc.v21.9
    [27] Ding Z T. Consensus disturbance rejection with disturbance observers. IEEE Transactions on Industrial Electronics, 2015, 62(9):5829-5837 doi: 10.1109/TIE.2015.2442218
    [28] Godsil C, Royle G F. Algebraic Graph Theory. New York: Springer, 2001
    [29] Ren W and Cao Y C. Distributed Coordination of Multi-Agent Networks: Emergent Problems, Models, and Issues. London, UK: Springer-Verlag, 2011.
    [30] Ding Z T. Adaptive consensus output regulation of a class of nonlinear systems with unknown high-frequency gain. Automatica, 2015, 51:348-345 doi: 10.1016/j.automatica.2014.10.079
    [31] Liu L. Adaptive cooperative output regulation for a class of nonlinear multi-agent systems. IEEE Transactions on Automatic Control, 2015, 60(6):1677-1682 doi: 10.1109/TAC.2014.2360023
    [32] Guo L, Chen W H. Disturbance attenuation and rejection for systems with nonlinearity via DOBC approach. International Journal of Robust and Nonlinear Control, 2005, 15(3):109-125 doi: 10.1002/(ISSN)1099-1239
    [33] Wang C Y, Zuo Z Y, Sun J Y, Yang J, Ding Z T. Consensus disturbance rejection for Lipschitz nonlinear multi-agent systems with input delay:a DOBC approach. Journal of the Franklin Institute, 2017, 354(1):298-315 doi: 10.1016/j.jfranklin.2016.09.019
    [34] Isidori A. Nonlinear Control Systems. Berlin Heidelberg: Springer-Verlag, 1995.
    [35] Zheng Y F, Zhang C S, Evans R J. A differential vector space approach to nonlinear system regulation. IEEE Transactions on Automatic Control, 2000, 45(11):1997-2010. doi: 10.1109/9.887623
    [36] Gu Y, Seanor B, Campa G, Napolitano M R, Rowe L, Gururajan S, et al. Design and flight testing evaluation of formation control laws. IEEE Transactions on Control Systems Technology, 2006, 14(6):1105-1112 doi: 10.1109/TCST.2006.880203
  • 加载中
图(6)
计量
  • 文章访问数:  2117
  • HTML全文浏览量:  267
  • PDF下载量:  1053
  • 被引次数: 0
出版历程
  • 收稿日期:  2016-11-01
  • 录用日期:  2017-04-21
  • 刊出日期:  2018-06-20

目录

    /

    返回文章
    返回