Adaptive Detection of Blast Furnace Surface Contour with Fractional Multi-directional Differential Operator
-
摘要: 高炉料面图像含有丰富的高炉炉况信息,高炉料面轮廓能直接反映料面的凹凸起伏、煤气流分布以及炉况等信息,但高炉料面图像具有对比度低、细节不明显和有强亮斑等特点,使得高炉料面轮廓检测十分困难.本文提出一种新型的高炉料面轮廓检测方法:1)对高炉料面图像进行预处理,增强图像动态范围和图像边缘信息;2)采用分数阶的多向微分算子提取一组料面轮廓可行域;3)用自适应方法确定最佳分数阶阶次,获得可行域中最优的料面轮廓曲线;4)用改进的Canny算子对其进行修正和补偿,得到连续准确的料面轮廓曲线.理论研究和实验结果表明,该方法可准确获取平滑的高炉料面轮廓,对高炉操作人员及时有效调控布料具有很好的参考价值.Abstract: Blast furnace image contains abundant furnace condition information and blast furnace surface contour can directly reflect the bump ups and downs of burden surface, the gas distribution and other information, but the blast furnace burden surface image has the features of low contrast, inconspicuous details and strong bright spots, which make it difficult to detect the blast furnace surface contour. In this connection, a new blast furnace surface contour detection method is proposed. Firstly, the image is preprocessed to enhance its dynamic range and edge information; secondly, multi-directional differential operators based on fractional are deduced to extract a set of blast furnace burden surface contours of feasible region; then, the optimum fractional order is determined by adaptive method to obtain the optimal surface contour curve in the feasible region; lastly, an improved Canny operator is proposed to correct and compensate the optimal surface contour curve. Theoretical research and experimental results show that the new method can accurately obtain a smooth blast furnace burden surface contour, which has great guiding significance for blast furnace foreman to control charging in time and effectively.1) 本文责任编委 胡昌华
-
表 1 高炉料面轮廓检测评价定量指标计算值
Table 1 The calculated value of blast furnace surface contour detection evaluation quantitative indicators
算法 误检像素点 误检率 漏检像素点 漏检率 命中轮廓像素点 命中率 Fom (品质因数) 算法复杂度(s) 本文算法 321 0.2668 54 0.0449 1 149 0.9551 0.8063 2.937 Canny 2 058 1.7107 784 0.6517 419 0.3483 0.3252 1.159 Log 2291 1.9044 780 0.6484 423 0.3516 0.2920 0.864 Sobel 2 424 2.0150 805 0.6692 398 0.3308 0.2 839 0.800 -
[1] 杨振虎. 图像处理在高炉料面可视化监控中的理论应用[硕士学位论文], 山东大学, 中国, 2011.Yang Zhen-Hu. Image Processing in the Visual Monitoring of High Surface Charge in the Application of the Theory[Master dissertation], Shandong University, China, 2011. [2] 黄月琴, 陈先中, 王田, 黄柳, 侯庆文. 基于模糊模式识别的高炉料面控制研究. 第32届中国控制会议论文. 西安, 中国, 2013. 2548-2553Huang Yue-Qin, Chen Xian-Zhong, Wang Tian, Huang Liu, Hou Qing-Wen. Control study based on fuzzy pattern recognition of blast furnace surface. In:Proceedings of the 32nd Chinese Control Conference. Xi'an, China, 2013. 2548-2553 [3] Chen X Z, Liu F M, Hou Q W, Lu Y F. Industrial high-temperature radar and imaging technology in blast furnace burden distribution monitoring process. In:Proceedings of the 9th International Conference on Electronic Measurement and Instruments. Beijing, China:IEEE, 2009. 1599-1603 [4] Koyuncu İ, Çetin Ö, Katircioǧlu M, Tuna M. Edge dedection application with FPGA based Sobel operator. In:Proceedings of the 23th Signal Processing and Communications Applications Conference (SIU). Malatya, Turkey:IEEE, 2015. 1829-1832 [5] 文山, 李葆青.基于小波分层的多方向图像边缘检测.自动化学报, 2007, 33 (5):480-487 http://www.aas.net.cn/CN/abstract/abstract14294.shtmlWen Shan, Li Bao-Qing. Multidirectional image edge detection based on wavelet laid. Acta Automatica Sinica, 2007, 33 (5):480-487 http://www.aas.net.cn/CN/abstract/abstract14294.shtml [6] 何春, 叶永强, 姜斌, 周鑫.一种基于分数阶次微积分模板的新型边缘检测方法.自动化学报, 2012, 38(5):776-787 http://www.aas.net.cn/CN/abstract/abstract13351.shtmlHe Chun, Ye Yong-Qiang, Jiang Bin, Zhou Xin. A novel edge detection method based on fractional-order calculus mask. Acta Automatica Sinica, 2012, 38 (5):776-787 http://www.aas.net.cn/CN/abstract/abstract13351.shtml [7] Gonzalez R C, Woods R E. Digital Image Processing. New Jersey, USA:Prentice-Hall, 2008. 703-728 [8] Li E S, Zhu S L, Zhu B S, Zhao Y, Xia C G, Song L H. An adaptive edge-detection method based on the Canny operator. In:Proceedings of the 2009 International Conference on Environmental Science and Information Application Technology. Wuhan, China:IEEE, 2009. 465-469 [9] Zhang J X, Chang W, Wu L. Edge detection based on general grey correlation and LoG operator. In:Proceedings of the 2010 International Conference on Artificial Intelligence and Computational Intelligence (AICI). Sanya, China:IEEE, 2010. 480-483 [10] Wang Z M, Su J Y, Zhang P. Image edge detection algorithm based onwavelet fractional differential theory. In:Proceedings of the 35th Chinese Control Conference (CCC). Chengdu, China:IEEE, 2016. 10407-10411 [11] Gao C B, Zhou J L, Hu J R, Lang F N. Edge detection of colour image based on quaternion fractional differential. IET Image Processing, 2011, 5 (3):261-272 doi: 10.1049/iet-ipr.2009.0409 [12] Xie Y F, Chen H, Gui W H, Liu J P, Xia J L. A novel fractional order Sobel operator based on texture images. In:Proceedings of the 30th Chinese Control Conference (CCC). Yantai, China:IEEE, 2011. 3100-3104 [13] Mcilhagga W. The Canny edge detector revisited. International Journal of Computer Vision, 2011, 91 (3):251-261 doi: 10.1007/s11263-010-0392-0 [14] Hao G, Min L, Feng H. Improved self-adaptive edge detection method based on Canny. In:Proceedings of the 5th International Conference on Intelligent Human-Machine Systems and Cybernetics (IHMSC). Hangzhou, China:IEEE, 2013. 527-530 [15] Yuan L Y, Xu X. Adaptive image edge detection algorithm based on Canny operator. In:Proceedings of the 4th International Conference on Advanced Information Technology and Sensor Application (AITS). Harbin, China:IEEE, 2015. 28-31 [16] Chen Z P, Jiang Z H, Gui W H, Yang C H. A novel device for optical imaging of blast furnace burden surface:parallel low-light-loss backlight high-temperature industrial endoscope. IEEE Sensors Journal, 2016, 16 (17):6703-6717 doi: 10.1109/JSEN.2016.2587729 [17] Yoon H, Han Y, Hahn H. Image contrast enhancement based sub-histogram equalization technique without over-equalization noise. International Journal of Electrical and Electronics Engineering, 2009, 3 (6):323-329 http://or.nsfc.gov.cn/bitstream/00001903-5/334447/1/1000013234093.pdf [18] Pu Y F, Wang W X, Zhou J L, Wang Y Y, Jia H D. Fractional differential approach to detecting textural features of digital image and its fractional differential filter implementation. Science in China Series F:Information Sciences, 2008, 51 (9):1319-1339 doi: 10.1007/s11432-008-0098-x [19] Chen X H, Fei X D. Improving edge-detection algorithm based on fractional differential approach. In:Proceedings of the 2012 International Conference on Image, Vision and Computing (ICIVC 2012). Singapore, Singapore:IACSIT Press, 2012. 1-6 [20] 蒋伟, 陈辉.基于分数阶微分和Sobel算子的边缘检测新模型.计算机工程与应用, 2012, 48 (4):182-185 http://www.wenkuxiazai.com/doc/cd293b03763231126edb11f7.htmlJiang Wei, Chen Hui. New edge detection model based on fractional differential and Sobel operator. Computer Engineering and Applications, 2012, 48 (4):182-185 http://www.wenkuxiazai.com/doc/cd293b03763231126edb11f7.html [21] Pan D F, Wang B. An improved Canny algorithm. In:Proceedings of the 27th Chinese Control Conference. Kunming, China:IEEE, 2008. 456-459 [22] Xie Y N, Zhu Z, Zhang X G, Wang Q. An adaptive median filter using local texture information in images. In:Proceedings of the 13th IEEE/ACIS International Conference on Computer and Information Science (ICIS). Taiyuan, China:IEEE, 2014. 177-180 [23] Panetta K, Gao C, Agaian S, Nercessian S. A new reference-based edge map quality measure. IEEE Transactions on Systems, Man, and Cybernetics:Systems, 2016, 46 (11):1505-1517 doi: 10.1109/TSMC.2015.2503386 [24] 陈宏希.基于品质因数的边缘检测算子性能优劣客观评价研究.自动化与仪器仪表, 2015, (8):8-10 http://www.cnki.com.cn/Article/CJFDTotal-ZDYY201508004.htmChen Hong-Xi. Study on the objective evaluation of the performance of edge detection operator based on the quality factor. Automation and Instrumentation, 2015, (8):8-10 http://www.cnki.com.cn/Article/CJFDTotal-ZDYY201508004.htm