2.845

2023影响因子

(CJCR)

  • 中文核心
  • EI
  • 中国科技核心
  • Scopus
  • CSCD
  • 英国科学文摘

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于感知掩蔽深度神经网络的单通道语音增强方法

韩伟 张雄伟 闵刚 张启业

韩伟, 张雄伟, 闵刚, 张启业. 基于感知掩蔽深度神经网络的单通道语音增强方法. 自动化学报, 2017, 43(2): 248-258. doi: 10.16383/j.aas.2017.c150719
引用本文: 韩伟, 张雄伟, 闵刚, 张启业. 基于感知掩蔽深度神经网络的单通道语音增强方法. 自动化学报, 2017, 43(2): 248-258. doi: 10.16383/j.aas.2017.c150719
HAN Wei, ZHANG Xiong-Wei, MIN Gang, ZHANG Qi-Ye. A Single-channel Speech Enhancement Approach Based on Perceptual Masking Deep Neural Network. ACTA AUTOMATICA SINICA, 2017, 43(2): 248-258. doi: 10.16383/j.aas.2017.c150719
Citation: HAN Wei, ZHANG Xiong-Wei, MIN Gang, ZHANG Qi-Ye. A Single-channel Speech Enhancement Approach Based on Perceptual Masking Deep Neural Network. ACTA AUTOMATICA SINICA, 2017, 43(2): 248-258. doi: 10.16383/j.aas.2017.c150719

基于感知掩蔽深度神经网络的单通道语音增强方法

doi: 10.16383/j.aas.2017.c150719
基金项目: 

国家自然科学基金 61471394

江苏省自然科学基金 BK20140074

国家自然科学基金 61402519

江苏省自然科学基金 BK20140071

详细信息
    作者简介:

    韩伟解放军理工大学指挥信息系统学院博士研究生.2013年获得解放军理工大学硕士学位.主要研究方向为语音信号处理技术, 深度学习和语音分离.E-mail:lan3533065@163.com

    闵刚解放军理工大学指挥信息系统学院博士研究生.西安通信学院讲师.2008年获得解放军理工大学硕士学位.主要研究方向为语音信号处理理论与技术, 语音编码, 语音增强.E-mail:mgxaty@gmail.com

    张启业解放军96637部队助理工程师.2013年获得解放军理工大学硕士学位.主要研究方向为光通信理论与技术.E-mail:wangwangzhang555@163.com

    通讯作者:

    张雄伟解放军理工大学指挥信息系统学院教授.1992年获得南京通信工程学院博士学位.主要研究方向为智能信息处理, 语音与图像信号处理, 数字通信.本文通信作者.E-mail:xwzhang9898@163.com

A Single-channel Speech Enhancement Approach Based on Perceptual Masking Deep Neural Network

Funds: 

National Natural Science Foundation of China 61471394

Natural Science Foundation of Jiangsu Province BK20140074

National Natural Science Foundation of China 61402519

Natural Science Foundation of Jiangsu Province BK20140071

More Information
    Author Bio:

    Ph. D. candidate at the College of Command Information System, PLA University of Science and Technology. He received his master degree from PLA University of Science and Technology in 2013. His research interest covers acoustic and speech signal processing, deep learning and speech separation

    Ph. D. candidate at the College of Command Information System, PLA University of Science and Technology and lecturer at Xi′an Communications Institute. He received his master degree from PLA University of Science and Technology in 2008. His research interest covers acoustic and speech signal processing theory and techniques, speech coding and speech enhancement

    Assistant engineer at the Unit 96637 of PLA. He received his master degree from PLA University of Science and Technology in 2013. His research interest covers optical communication theory and techniques

    Corresponding author: ZHANG Xiong-Wei Professor at the College of Command Information System, PLA University of Science and Technology. He received his Ph. D. degree from Nanjing Institute of Communication Engineering in 1992. His research interest covers intelligence information processing, speech and image signal processing, and telecommunication systems. Corresponding author of this paper
  • 摘要: 本文将心理声学掩蔽特性应用于基于深度神经网络(Deep neural network,DNN)的单通道语音增强任务中,提出了一种具有感知掩蔽特性的DNN结构.首先,提出的DNN对带噪语音幅度谱特征进行训练并分别得到纯净语音和噪声的幅度谱估计.其次,利用估计的纯净语音幅度谱计算噪声掩蔽阈值.然后,将噪声掩蔽阈值和估计的噪声幅度谱联合计算得到一个感知增益函数.最后,利用感知增益函数从带噪语音幅度谱中估计出增强语音幅度谱.在TIMIT数据库上,对不同信噪比下的20种噪声进行的仿真实验表明,无论噪声类型是否在语音的训练集中出现,所提出的感知掩蔽DNN都能够在有效去除噪声的同时保持较小的语音失真,增强效果明显优于常见的DNN增强方法以及NMF(Nonnegative matrix factorization)增强方法.
    1)  本文责任编委 柯登峰
  • 图  1  基于DNN的语音增强

    Fig.  1  Speech enhancement based on DNN

    图  2  基于PM-DNN的语音增强

    Fig.  2  Speech enhancement based on PM-DNN

    图  3  基于PM-DNN的语音增强框图

    Fig.  3  The framework of speech enhancement based on PM-DNN

    图  4  PM-DNN目标函数中的权重$\alpha$和$\beta$对20种噪声的PESQ均值影响

    Fig.  4  The PESQ scores of PM-DNN objective function with different $\alpha$ and $\beta$ (For each condition, the numbers are the mean values over all the 20 noise types.)

    图  5  4种增强方法在20种不同噪声情况下的PESQ值(每种噪声的PESQ值是在-5 dB, 0 dB, 5 dB和10 dB 4种信噪比下的平均值.)

    Fig.  5  The PESQ scores of the 4 enhancement methods for the 20 noise types (For each noise type, the numbers are the mean values over four input SNR conditions, i.e. from -5 dB to 10 dB spaced by 5 dB.)

    图  6  4种增强方法在20种不同噪声情况下的LSD值(每种噪声的LSD值是在-5 dB, 0 dB, 5 dB和10 dB 4种信噪比下的平均值.)

    Fig.  6  The LSD values of the 4 enhancement methods for the 20 noise types (For each noise type, the numbers are the mean values over four input SNR conditions, i.e. from -5 dB to 10 dB spaced by 5 dB.)

    图  7  4种增强方法在20种不同噪声情况下的fwSNRseg值(每种噪声的fwSNRseg值是在-5 dB, 0 dB, 5 dB和10 dB 4种信噪比下的平均值.)

    Fig.  7  The fwSNRseg values of the 4 enhancement methods for the 20 noise types (For each noise type, the numbers are the mean values over four input SNR conditions, i.e. from -5 dB to 10 dB spaced by 5 dB.)

    图  8  语谱图

    Fig.  8  Spectrograms

    表  1  4种信噪比下, 不同方法对20种噪声的PESQ均值

    Table  1  The PESQ scores of different methods at four different input SNR levels (For each condition, the numbers are the mean values over all the 20 noise types.)

    SNR (dB) NMF DNN IRM-DNN PM-DNN (First output) PM-DNN NMF (Mask) DNN (Mask) IRM-DNN (Mask) PM-DNN (Mask)
    -5 1.705 1.74 1.787 1.732 1.875 1.701 1.775 1.74 1.834
    0 2.002 1.995 2.061 1.996 2.165 1.995 2.034 2.015 2.122
    5 2.261 2.194 2.35 2.256 2.445 2.262 2.284 2.308 2.411
    10 2.524 2.35 2.631 2.518 2.714 2.52 2.535 2.596 2.691
    下载: 导出CSV
  • [1] Boll S F. Suppression of acoustic noise in speech using spectral subtraction. IEEE Transactions on Acoustics, Speech, and Signal Processing, 1979, 27(2):113-120 doi: 10.1109/TASSP.1979.1163209
    [2] Chen J D, Benesty J, Huang Y T, Doclo S. New insights into the noise reduction Wiener filter. IEEE Transactions on Audio, Speech and Language Processing, 2006, 14(4):1218-1234 doi: 10.1109/TSA.2005.860851
    [3] Ephraim Y, Malah D. Speech enhancement using a minimum-mean square error short-time spectral amplitude estimator. IEEE Transactions on Acoustics, Speech, and Signal Processing, 1984, 32(6):1109-1121 doi: 10.1109/TASSP.1984.1164453
    [4] Gerkmann T, Hendriks R C. Unbiased MMSE-based noise power estimation with low complexity and low tracking delay. IEEE Transactions on Audio, Speech, and Language Processing, 2012, 20(4):1383-1393 doi: 10.1109/TASL.2011.2180896
    [5] Jensen J R, Benesty J, Christensen M G, Jensen S H. Enhancement of single-channel periodic signals in the time-domain. IEEE Transactions on Audio, Speech, and Language Processing, 2012, 20(7):1948-1963 doi: 10.1109/TASL.2012.2191957
    [6] Wilson K W, Raj B, Smaragdis P, Divakaran A. Speech denoising using nonnegative matrix factorization with priors. In:Proceedings of the 2008 IEEE International Conference on Acoustics, Speech and Signal Processing. Las Vegas, USA:IEEE, 2008. 4029-4032
    [7] Sun C L, Zhu Q, Wan M H. A novel speech enhancement method based on constrained low-rank and sparse matrix decomposition. Speech Communication, 2014, 60:44-55 doi: 10.1016/j.specom.2014.03.002
    [8] Sun M, Li Y N, Gemmeke J, Zhang X W. Speech enhancement under low SNR conditions via noise estimation using sparse and low-rank NMF with Kullback-Leibler divergence. IEEE/ACM Transactions on Audio, Speech, and Language Processing, 2015, 23(7):1233-1242 doi: 10.1109/TASLP.2015.2427520
    [9] Xu Y, Du J, Dai L R, Lee C H. A regression approach to speech enhancement based on deep neural networks. IEEE/ACM Transactions on Audio, Speech, and Language Processing, 2015, 23(1):7-19 doi: 10.1109/TASLP.2014.2364452
    [10] Huang P S, Kim M, Hasegawa-Johnson M, Smaragdis P. Joint optimization of masks and deep recurrent neural networks for monaural source separation. IEEE/ACM Transactions on Audio, Speech, and Language Processing, 2015, 23(12):2136-2147 doi: 10.1109/TASLP.2015.2468583
    [11] Wang Y X, Narayanan A, Wang D L. On training targets for supervised speech separation. IEEE/ACM Transactions on Audio, Speech, and Language Processing, 2014, 22(12):1849-1858 doi: 10.1109/TASLP.2014.2352935
    [12] Sun M, Zhang X W, Van hamme H, Zheng T F. Unseen noise estimation using separable deep auto encoder for speech enhancement. IEEE/ACM Transactions on Audio, Speech, and Language Processing, 2016, 24(1):93-104 doi: 10.1109/TASLP.2015.2498101
    [13] Williamson D S, Wang Y X, Wang D L. Complex ratio masking for monaural speech separation. IEEE/ACM Transactions on Audio, Speech, and Language Processing, 2016, 24(3):483-492 doi: 10.1109/TASLP.2015.2512042
    [14] Narayanan A, Wang D L. Improving robustness of deep neural network acoustic models via speech separation and joint adaptive training. IEEE/ACM Transactions on Audio, Speech, and Language Processing, 2015, 23(1):92-101 https://www.researchgate.net/publication/273296153_Improving_Robustness_of_Deep_Neural_Network_Acoustic_Models_via_Speech_Separation_and_Joint_Adaptive_Training
    [15] Hinton G E, Osindero S, Teh Y W. A fast learning algorithm for deep belief nets. Neural Computation, 2006, 18(7):1527-1554 doi: 10.1162/neco.2006.18.7.1527
    [16] Bengio Y. Learning deep architectures for AI. Foundations and Trends® in Machine Learning, 2009, 2(1):1-127 doi: 10.1561/2200000006
    [17] Glorot X, Bordes A, Bengio Y. Deep sparse rectifier neural networks. In:Proceedings of the 14th International Conference on Artificial Intelligence and Statistics. Fort Lauderdale, USA:JMLR, 2011. 315-323
    [18] 张勇, 刘轶, 刘宏.结合人耳听觉感知的两级语音增强算法.信号处理, 2014, 30(4):363-373 http://www.cnki.com.cn/Article/CJFDTOTAL-XXCN201404001.htm

    Zhang Yong, Liu Yi, Liu Hong. A two-stage speech enhancement algorithm combined with human auditory perception. Journal of Signal Processing, 2014, 30(4):363-373 http://www.cnki.com.cn/Article/CJFDTOTAL-XXCN201404001.htm
    [19] Johnston J D. Transform coding of audio signals using perceptual noise criteria. IEEE Journal on Selected Areas in Communications, 1988, 6(2):314-323 doi: 10.1109/49.608
    [20] Udrea R M, Vizireanu N D, Ciochina S. An improved spectral subtraction method for speech enhancement using a perceptual weighting filter. Digital Signal Processing, 2008, 18(4):581-587 doi: 10.1016/j.dsp.2007.08.002
    [21] Hu Y, Loizou P C. Incorporating a psychoacoustical model in frequency domain speech enhancement. IEEE Signal Processing Letters, 2004, 11(2):270-273 doi: 10.1109/LSP.2003.821714
    [22] Rix A W, Beerends J G, Hollier M P, Hekstra A P. Perceptual evaluation of speech quality (PESQ)-a new method for speech quality assessment of telephone networks and codecs. In:Proceedings of the 2001 IEEE International Conference on Acoustics, Speech, and Signal Processing. Salt Lake City, USA:IEEE, 2001. 749-752
    [23] 邹霞, 陈亮, 张雄伟.基于Gamma语音模型的语音增强算法.通信学报, 2006, 27(10):118-123 http://www.cnki.com.cn/Article/CJFDTOTAL-TXXB200610019.htm

    Zou Xia, Chen Liang, Zhang Xiong-Wei. Speech enhancement with Gamma speech modeling. Journal on Communications, 2006, 27(10):118-123 http://www.cnki.com.cn/Article/CJFDTOTAL-TXXB200610019.htm
    [24] Hu Y, Loizou P C. Evaluation of objective quality measures for speech enhancement. IEEE Transactions on Audio, Speech, and Language Processing, 2008, 16(1):229-238 doi: 10.1109/TASL.2007.911054
    [25] Huang P S, Kim M, Hasegawa-Johnson M, Smaragdis P. Deep learning for monaural speech separation. In:Proceedings of the 2014 IEEE International Conference on Acoustics, Speech and Signal Processing. Florence, Italy:IEEE, 2014. 1562-1566
  • 加载中
图(8) / 表(1)
计量
  • 文章访问数:  3223
  • HTML全文浏览量:  1249
  • PDF下载量:  862
  • 被引次数: 0
出版历程
  • 收稿日期:  2015-10-31
  • 录用日期:  2016-06-06
  • 刊出日期:  2017-02-01

目录

    /

    返回文章
    返回