2.845

2023影响因子

(CJCR)

  • 中文核心
  • EI
  • 中国科技核心
  • Scopus
  • CSCD
  • 英国科学文摘

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于广义关联聚类图的分层关联多目标跟踪

齐美彬 岳周龙 疏坤 蒋建国

齐美彬, 岳周龙, 疏坤, 蒋建国. 基于广义关联聚类图的分层关联多目标跟踪. 自动化学报, 2017, 43(1): 152-160. doi: 10.16383/j.aas.2017.c150519
引用本文: 齐美彬, 岳周龙, 疏坤, 蒋建国. 基于广义关联聚类图的分层关联多目标跟踪. 自动化学报, 2017, 43(1): 152-160. doi: 10.16383/j.aas.2017.c150519
QI Mei-Bin, YUE Zhou-Long, SHU Kun, JIANG Jian-Guo. Multi-object Tracking Using Hierarchical Data Association Based on Generalized Correlation Clustering Graphs. ACTA AUTOMATICA SINICA, 2017, 43(1): 152-160. doi: 10.16383/j.aas.2017.c150519
Citation: QI Mei-Bin, YUE Zhou-Long, SHU Kun, JIANG Jian-Guo. Multi-object Tracking Using Hierarchical Data Association Based on Generalized Correlation Clustering Graphs. ACTA AUTOMATICA SINICA, 2017, 43(1): 152-160. doi: 10.16383/j.aas.2017.c150519

基于广义关联聚类图的分层关联多目标跟踪

doi: 10.16383/j.aas.2017.c150519
基金项目: 

安徽省科技攻关项目 1301b042023

国家自然科学基金 61371155

详细信息
    作者简介:

    齐美彬合肥工业大学计算机与信息学院教授.主要研究方向为视频编码, 运动目标检测与跟踪, DSP技术.E-mail:qimeibin@163.com

    疏坤合肥工业大学计算机与信息学院硕士研究生.主要研究方向为计算机视觉和图像检索.E-mail:shudaxia123@163.com

    蒋建国合肥工业大学计算机与信息学院教授.主要研究方向为数字图像分析与处理, 分布式智能系统, DSP技术及应用.E-mail:jgjiang@hfut.edu.cn

    通讯作者:

    岳周龙合肥工业大学计算机与信息学院硕士研究生.主要研究方向为计算机视觉, 图像处理, 多目标跟踪.本文通信作者.E-mail:yuezl_2012@163.com

Multi-object Tracking Using Hierarchical Data Association Based on Generalized Correlation Clustering Graphs

Funds: 

Science and Technology Brainstorm Project of An- hui Province 1301b042023

National Natural Science Foundation of China 61371155

More Information
    Author Bio:

    Professor at the School of Computer and Information, Hefei University of Technology. His research interest covers video coding, moving target detection and tracking, and DSP technol-ogy.

    Master student at the School of Computer and Information, Hefei University of Technology. His re-search interest covers computer vision and image retrieval.

    Professor at the School of Computer and Information, Hefei University of Technology. His research interest covers digital image analysis and processing, distributed intelligent systems, DSP technology and applications.

    Corresponding author: YUE Zhou-Long Master student at the School of Computer and Infor-mation, Hefei University of Technology. His research interest covers computer vision, image processing, and multi-object tracking. Cor-responding author of this paper.
  • 摘要: 检测跟踪是近期多目标跟踪研究的热点方向之一.目前大部分方法都是基于相邻帧之间的双向匹配,对检测点进行数据融合.本文提出的方法是,给定一个滑动时间窗口,在窗口内对某个目标每帧出现的检测点进行一次性数据融合.我们把多目标跟踪看作图的分割问题,利用广义关联聚类(Generalized correlation clustering problem,GCCP)图优化文中提出的数据融合.吸取分层数据关联的思想,把多目标跟踪分成两个阶段.首先,在时间窗口内遵循检测点,利用广义关联聚类,得到自适应长度的轨迹片段,轨迹片段长度不受窗口宽度的限制.然后,基于轨迹片段进一步数据关联,得到目标的长轨迹.在公共数据集上的实验测试表明,本文方法能够有效地实现多目标跟踪,对于遮挡处理、身份转换处理以及轨迹的生成具有很好的鲁棒性,多目标跟踪准确率(Multiple object tracking accuracy,MOTA)超过当前水平.
  • 图  1  GCCP的模型

    Fig.  1  GCCP model

    图  2  速度v 的估计

    Fig.  2  Estimated v

    图  3  多目标跟踪过程

    Fig.  3  The steps of multi-object tracking

    图  4  不同的轨迹片段

    Fig.  4  Different tracklets

    图  5  估计轨迹片段速度

    Fig.  5  Estimate speed of tracklet

    图  6  运动轨迹展示图

    Fig.  6  Trajectory of multi-object

    表  1  自适应轨迹片段与传统轨迹片段比较

    Table  1  The difference between traditional-tracklet and adaptive-tracklet

    Methods MOTA(%) MOTP(%) IDSTC Time(s) Rcll(%) Prcsn(%)
    Traditional-tracklet 93.0883.57163562.594.6198.74
    Adaptive-tracklet 95.1183.04477 2.34 96.3198.88
    下载: 导出CSV

    表  2  跟踪结果

    Table  2  The results of tracking

    Sequence MethodsMOTA(%) MOTP(%) Rcll(%) Prcsn(%)
    Longyin[13] 92.772.994.498.4
    Andriyenko[15] 88.379.690 98.7
    PETS-S2L1 Zamir[10] 90.369.0296.45 93.64
    Afshin[18] 90.463.12 -- --
    Izadinia[12] 90.77695.296.8
    Ours
    95.1183.0496.3198.88
    Longyin[13] 62.152.771.290.3
    PETS-S2L2 Anton[26] 56.959.465.589.8
    Ours
    52.9868.6357.1593.58
    Longyin[13] 88.481.990.898.3
    Andriyenko[15] 73.176.586.889.4
    Parking lot Zamir[10] 90.4374.185.398.2
    Guang[8] 79.374.1 -- --
    Izadinia[12] 88.977.596.593.6
    Ours
    91.3774.896.6195.24
    Zamir[10] 75.5971.93 -- --
    Guang[8] 72.971.3 -- --
    Town center McLaughlin[6] 74.1572.4183.2790.4
    Izadinia[12] 75.771.681.893.6
    Ours79.6770.684.5693.98
    下载: 导出CSV
  • [1] Dalal N, Triggs B. Histograms of oriented gradients for human detection. In:Proceedings of the 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR). San Diego, CA, USA:IEEE, 2005. 886-893 http://www.oalib.com/references/16879692
    [2] Wu B, Nevatia R. Detection and tracking of multiple, partially occluded humans by Bayesian combination of edgelet based part detectors. International Journal of Computer Vision, 2007, 75(2):247-266 doi: 10.1007/s11263-006-0027-7
    [3] Felzenszwalb P F, Girshick R B, McAllester D, Ramanan D. Object detection with discriminatively trained part-based models. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2010, 32(9):1627-1645 doi: 10.1109/TPAMI.2009.167
    [4] Bae S H, Yoon K J. Robust online multi-object tracking based on tracklet confidence and online discriminative appearance learning. In:Proceedings of the 2014 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Columbus, OH:IEEE, 2014. 1218-1225 http://cn.bing.com/academic/profile?id=b51a27abfe6ed8c117c6592b09704056&encoded=0&v=paper_preview&mkt=zh-cn
    [5] Huang C, Li Y, Nevatia R. Multiple target tracking by learning-based hierarchical association of detection responses. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2013, 35(4):898-910 doi: 10.1109/TPAMI.2012.159
    [6] McLaughlin N, del Rincon J M, Miller P. Online multiperson tracking with occlusion reasoning and unsupervised track motion model. In:Proceedings of the 10th IEEE International Conference on Advanced Video and Signal Based Surveillance (AVSS). Krakow:IEEE, 2013. 37-42 https://www.computer.org/csdl/proceedings/avss/2013/9999/00/index.html
    [7] Henriques J F, Caseiro R, Batista J. Globally optimal solution to multi-object tracking with merged measurements. In:Proceedings of the 2011 IEEE International Conference on Computer Vision (ICCV). Barcelona:IEEE, 2011. 2470-2477 http://cn.bing.com/academic/profile?id=3f2887f7ffb4e1720cf6c1b8cf6763b6&encoded=0&v=paper_preview&mkt=zh-cn
    [8] Shu G, Dehghan A, Oreifej O, Hand E, Shah M. Part-based multiple-person tracking with partial occlusion handling. In:Proceedings of the 2012 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Providence, RI:IEEE, 2012. 1815-1821
    [9] Zhang L, Li Y, Nevatia R. Global data association for multi-object tracking using network flows. In:Proceedings of the 2008 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Anchorage, AK:IEEE, 2008. 1-8
    [10] Zamir A R, Dehghan A, Shah M. Gmcp-tracker:global multi-object tracking using generalized minimum clique graphs. In:Proceedings of the 12th European Conference on Computer Vision (ECCV) 2012. Florence, Italy:Springer-Verlag, 2012. 343-356
    [11] Ristani E, Tomasi C. Tracking multiple people online and in real time. In:Proceedings of the 12th Asian Conference on Computer Vision (ACCV) 2014. Singapore:Springer International Publishing, 2015. 444-459 http://cn.bing.com/academic/profile?id=40f7f1fb493f5c240dac436babfbf566&encoded=0&v=paper_preview&mkt=zh-cn
    [12] Izadinia H, Saleemi I, Li W H, Shah M. (MP)2m t:multiple people multiple parts tracker. In:Proceedings of the 12th European Conference on Computer Vision (ECCV) 2012. Florence, Italy:Springer-Verlag, 2012. 100-114
    [13] Wen L, Li W, Yan J, Lei Z, Yi D, Li S Z. Multiple target tracking based on undirected hierarchical relation hypergraph. In:Proceedings of the 2014 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Columbus, OH:IEEE, 2014. 1282-1289
    [14] Yang B, Nevatia R. An online learned CRF model for multi-target tracking. In:Proceedings of the 2012 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Providence, RI:IEEE, 2012. 2034-2041
    [15] Andriyenko A, Schindler K, Roth S. Discrete-continuous optimization for multi-target tracking. In:Proceedings of the 2012 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Providence, RI:IEEE, 2012. 1926-1933
    [16] Kuhn H W. The Hungarian method for the assignment problem. Naval Research Logistics Quarterly, 1955, 2(1-2):83-97 doi: 10.1002/(ISSN)1931-9193
    [17] Chari V, Lacoste-Julien S, Laptev I, Sivic J. On pairwise costs for network flow multi-object tracking. In:Proceedings of the 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Boston, MA:IEEE, 2015. 5537-5545
    [18] Dehghan A, Tian Y, Torr P H S, Shah M. Target identity-aware network flow for online multiple target tracking. In:Proceedings of the 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Boston, MA:IEEE, 2015. 1146-1154
    [19] Bansal N, Blum A, Chawla S. Correlation clustering. Machine Learning, 2004, 56(1-3):89-113 doi: 10.1023/B:MACH.0000033116.57574.95
    [20] Bagon S, Galun M. Large scale correlation clustering optimization. arXiv:1112.2903, 2011.
    [21] Feremans C, Labbé M, Laporte G. Generalized network design problems. European Journal of Operational Research, 2003, 148(1):1-13 doi: 10.1016/S0377-2217(02)00404-6
    [22] Ojala T, Pietikainen M, Harwood D. Performance evaluation of texture measures with classification based on Kullback discrimination of distributions. In:Proceedings of the 12th IAPR International Conference on Pattern Recognition, 1994. Vol.1-Conference A:Computer Vision & Image Processing. Jerusalem:IEEE, 1994. 582-585
    [23] Ferryman J, Shahrokni A. PETS2009:dataset and challenge. In:Proceedings of the 12th IEEE International Workshop on Performance Evaluation of Tracking and Surveillance. Snowbird, UT:IEEE, 2009. 1-6
    [24] Benfold B, Reid I. Stable multi-target tracking in real-time surveillance video. In:Proceedings of the 2011 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Providence, RI:IEEE, 2011. 3457-3464
    [25] Bernardin K, Stiefelhagen R. Evaluating multiple object tracking performance:the CLEAR MOT metrics. EURASIP Journal on Image and Video Processing, 2008, 2008:Article ID 246309
    [26] Milan A, Roth S, Schindler K. Continuous energy minimization for multitarget tracking. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2014, 36(1):58-72
    [27] Milan A, The Data. The detections and ground truth for MOT[Online], available:http://www.milanton.de/data/, April 12, 2016.
  • 加载中
图(6) / 表(2)
计量
  • 文章访问数:  2128
  • HTML全文浏览量:  252
  • PDF下载量:  1057
  • 被引次数: 0
出版历程
  • 收稿日期:  2015-08-13
  • 录用日期:  2016-04-08
  • 刊出日期:  2017-01-01

目录

    /

    返回文章
    返回