2.845

2023影响因子

(CJCR)

  • 中文核心
  • EI
  • 中国科技核心
  • Scopus
  • CSCD
  • 英国科学文摘

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

延迟不确定马尔科夫跳变系统的执行器和传感器故障同时估计方法

李晓航 朱芳来

李晓航, 朱芳来. 延迟不确定马尔科夫跳变系统的执行器和传感器故障同时估计方法. 自动化学报, 2017, 43(1): 72-82. doi: 10.16383/j.aas.2017.c150389
引用本文: 李晓航, 朱芳来. 延迟不确定马尔科夫跳变系统的执行器和传感器故障同时估计方法. 自动化学报, 2017, 43(1): 72-82. doi: 10.16383/j.aas.2017.c150389
LI Xiao-Hang, ZHU Fang-Lai. Simultaneous Estimation of Actuator and Sensor Faults for Uncertain Time-delayed Markovian Jump Systems. ACTA AUTOMATICA SINICA, 2017, 43(1): 72-82. doi: 10.16383/j.aas.2017.c150389
Citation: LI Xiao-Hang, ZHU Fang-Lai. Simultaneous Estimation of Actuator and Sensor Faults for Uncertain Time-delayed Markovian Jump Systems. ACTA AUTOMATICA SINICA, 2017, 43(1): 72-82. doi: 10.16383/j.aas.2017.c150389

延迟不确定马尔科夫跳变系统的执行器和传感器故障同时估计方法

doi: 10.16383/j.aas.2017.c150389
基金项目: 

国家自然科学基金 61573256

详细信息
    作者简介:

    李晓航 同济大学电子与信息工程学院控制理论与控制工程专业博士研究生.2011年获得上海理工大学工学学士学位.主要研究方向为未知输入观测器设计,故障检测与重构以及容错控制器设计.E-mail:lixiaohang58@163.com

    通讯作者:

    朱芳来 同济大学电子与信息工程学院教授.主要研究方向为非线性系统鲁棒控制,观测器设计,基于模型的故障检测与隔离.本文通信作者. E-mail:zhufanglai@tongji.edu.cn.

Simultaneous Estimation of Actuator and Sensor Faults for Uncertain Time-delayed Markovian Jump Systems

Funds: 

Supported by National Natural Science Foundation of China 61573256

More Information
    Author Bio:

    LI Xiao-Hang Ph. D. candidate at the College of Electronics and Informa- tion Engineering, Tongji University. She received her bach- elor degree from University of Shanghai for Science and Technology in 2011. Her research interest covers unknown input observer design, fault detection and reconstruction, and fault-tolerant control.

    Corresponding author: ZHU Fang-Lai Professor at the College of Electronics and Information Engineering, Tongji University. His re-search interest covers nonlinear robust control, observer de-sign, and model-based fault detection and isolation. Cor-responding author of this paper. E-mail:zhufanglai@tongji.edu.cn.
  • 摘要: 针对具有参数不确定和延迟环节的马尔科夫跳变系统,在状态转移概率矩阵(Transition probability matrix,TPM)不确定的情形下,讨论了其执行器和传感器故障同时估计的方法.通过扩展系统状态,将系统转换为一个具有马尔科夫跳变参数的广义描述系统,基于此广义描述系统设计马尔科夫跳变观测器实现对其状态和传感器故障的估计.与此同时,还设计了一组自适应律对执行器故障进行在线调节.通过求解一组线性矩阵不等式最优化问题,得到观测器存在的充分条件.最后,针对两个数值实例,验证了所设计方法的有效性.
  • 图  1  状态$x_1$的估计曲线

    Fig.  1  The curve of the estimation of $x_1$

    图  2  状态$x_2$的估计曲线

    Fig.  2  The curve of the estimation of $x_2$

    图  3  状态$x_3$的估计曲线

    Fig.  3  The curve of the estimation of $x_3$

    图  4  执行器故障估计曲线

    Fig.  4  The curve of the estimation of actuator fault

    图  5  传感器故障估计曲线

    Fig.  5  The curve of the estimation of sensor fault

    图  6  切换信号

    Fig.  6  Switching signal

    图  7  F-404模型状态$x_1$的估计曲线

    Fig.  7  The curve of the estimation of $x_1$ of Model F-404

    图  8  F-404模型状态$x_2$的估计曲线

    Fig.  8  The curve of the estimation of $x_2$ of Model F-404

    图  9  F-404模型状态$x_3$的估计曲线

    Fig.  9  The curve of the estimation of $x_3$ of Model F-404

    图  10  F-404模型执行器故障估计曲线

    Fig.  10  The curve of the estimation of actuator fault of Model F-404

    图  11  F-404模型传感器故障估计曲线

    Fig.  11  The curve of the estimation of sensor fault of Model F-404

    图  12  切换信号

    Fig.  12  Switching signal

  • [1] Mahmoud M S, Shi P. Robust Kalman filtering for continuous time-lag systems with Markovian jump parameters. IEEE Transactions on Circuits and Systems I:Fundamental Theory and Applications, 2003, 50(1):98-105 doi: 10.1109/TCSI.2002.807504
    [2] Park B Y, Kwon N K, Park P G. Stabilization of Markovian jump systems with incomplete knowledge of transition probabilities and input quantization. Journal of the Franklin Institute, 2015, 352(10):4354-4365 doi: 10.1016/j.jfranklin.2015.06.008
    [3] Liu M, Ho D W C, Shi P. Adaptive fault-tolerant compensation control for Markovian jump systems with mismatched external disturbance. Automatica, 2015, 58:5-14 doi: 10.1016/j.automatica.2015.04.022
    [4] Wu L G, Su X J, Shi P. Output feedback control of Markovian jump repeated scalar nonlinear systems. IEEE Transactions on Automatic Control, 2014, 59(1):199-204 doi: 10.1109/TAC.2013.2267353
    [5] Zhang Y, He Y, Wu M, Zhang J. Stabilization for Markovian jump systems with partial information on transition probability based on free-connection weighting matrices. Automatica, 2011, 47(1):79-84 doi: 10.1016/j.automatica.2010.09.009
    [6] 田恩刚, 岳东, 杨继全. 具有随机非线性和部分转移概率未知的马尔科夫系统的H控制. 控制理论与应用, 2014, 31(3):392-396

    Tian En-Gang, Yue Dong, Yang Ji-Quan. H control for Markovian jump systems with incomplete transition probabilities and probabilistic nonlinearities. Control Theory&Applications, 2014, 31(3):392-396
    [7] Li F B, Wu L G, Shi P, Lim C C. State estimation and sliding mode control for semi-Markovian jump systems with mismatched uncertainties. Automatica, 2015, 51:385-393 doi: 10.1016/j.automatica.2014.10.065
    [8] Du B Z, Lam J, Zou Y, Shu Z. Stability and stabilization for Markovian jump time-delay systems with partially unknown transition rates. IEEE Transactions on Circuits and Systems I:Regular Papers, 2013, 60(2):341-351 doi: 10.1109/TCSI.2012.2215791
    [9] Wu L G, Shi P, Gao H J. State estimation and sliding-mode control of Markovian jump singular systems. IEEE Transactions on Automatic Control, 2010, 55(5):1213-1219 doi: 10.1109/TAC.2010.2042234
    [10] Zhang Y S, Xu S Y, Chu Y M. Sliding mode observer-controller design for uncertain Markovian jump systems with time delays. International Journal of Robust and Nonlinear Control, 2012, 22(4):355-368 doi: 10.1002/rnc.v22.4
    [11] 高飞, 张洪钺. 带马尔科夫参数时滞容错控制系统稳定性分析. 北京航空航天大学学报, 2006, 32(5):566-570 http://www.cnki.com.cn/Article/CJFDTOTAL-BJHK200605016.htm

    Gao Fei, Zhang Hong-Yue. Stability of time-delay fault tolerant control systems with Markovian parameters. Journal of Beijing University of Aeronautics and Astronautics, 2006, 32(5):566-570 http://www.cnki.com.cn/Article/CJFDTOTAL-BJHK200605016.htm
    [12] Li F B, Wu L G, Shi P. Stochastic stability of semi-Markovian jump systems with mode-dependent delays. International Journal of Robust and Nonlinear Control, 2014, 24(18):3317-3330 doi: 10.1002/rnc.v24.18
    [13] Kao Y G, Li W, Wang C H. Nonfragile observer-based H sliding mode control for Itô stochastic systems with Markovian switching. International Journal of Robust and Nonlinear Control, 2014, 24(15):2035-2047 doi: 10.1002/rnc.v24.15
    [14] Cong S, Zhang H T, Zou Y. A new exponential stability condition for delayed systems with Markovian switching. Acta Automatica Sinica, 2010, 36(7):1025-1029 http://cn.bing.com/academic/profile?id=82bb61a498a6778a2d539a6c0446bbab&encoded=0&v=paper_preview&mkt=zh-cn
    [15] 宋杨, 董豪, 费敏锐. 基于切换频度的马尔科夫网络控制系统均方指数镇定. 自动化学报, 2012, 38(5):876-881 doi: 10.3724/SP.J.1004.2012.00876

    Song Yang, Dong Hao, Fei Min-Rui. Mean square exponential stabilization of Markov networked control systems based on switching frequentness. Acta Automatica Sinica, 2012, 38(5):876-881 doi: 10.3724/SP.J.1004.2012.00876
    [16] Liu M, Shi P, Zhang L X, Zhao X D. Fault-tolerant control for nonlinear Markovian jump systems via proportional and derivative sliding mode observer technique. IEEE Transactions on Circuits and Systems I:Regular Papers, 2011, 58(11):2755-2764 doi: 10.1109/TCSI.2011.2157734
    [17] Yu J Y, Liu M, Yang W, Shi P, Tong S Y. Robust fault detection for Markovian jump systems with unreliable communication links. International Journal of Systems Science, 2013, 44(11):2015-2026 doi: 10.1080/00207721.2012.683832
    [18] Shi P, Liu M, Zhang L X. Fault-tolerant sliding-mode-observer synthesis of Markovian jump systems using quantized measurements. IEEE Transactions on Industrial Electronics, 2015, 62(9):5910-5918 doi: 10.1109/TIE.2015.2442221
    [19] Chen L H, Huang X L, Fu S S. Fault-tolerant control for Markovian jump delay systems with an adaptive observer approach. Circuits, Systems, and Signal Processing, DOI: 10.1007/s00034-016-0277-8
    [20] Li H Y, Gao H J, Shi P, Zhao X D. Fault-tolerant control of Markovian jump stochastic systems via the augmented sliding mode observer approach. Automatica, 2014, 50(7):1825-1834 doi: 10.1016/j.automatica.2014.04.006
    [21] 王国良, 孙广兢, 薄海英. 广义马尔科夫跳变系统的部分模态依赖观测器设计. 控制与决策, 2015, 30(4):733-738 http://www.cnki.com.cn/Article/CJFDTOTAL-KZYC201504025.htm

    Wang Guo-Liang, Sun Guang-Jin, Bo Hai-Ying. Partially mode-dependent observer design of singular Markovian jump systems. Control Theory&Applications, 2015, 30(4):733-738 http://www.cnki.com.cn/Article/CJFDTOTAL-KZYC201504025.htm
    [22] Shen H, Xu S Y, Zhou J P, Lu J J. Fuzzy H filtering for nonlinear Markovian jump neutral systems. International Journal of Systems Science, 2011, 42(5):767-780 doi: 10.1080/00207721003790351
    [23] Zhang X M, Lu G P, Zheng Y F. Observer design for descriptor Markovian jumping systems with nonlinear perturbations. Circuits, Systems&Signal Processing, 2008, 27(1):95-112 http://cn.bing.com/academic/profile?id=234d086e260c7b7eca39784a2048b582&encoded=0&v=paper_preview&mkt=zh-cn
    [24] He S P, Liu F. Adaptive observer-based fault estimation for stochastic Markovian jumping systems. Abstract and Applied Analysis, 2012, 2012:Article ID 176419
    [25] Liu M, Cao X B, Shi P. Fuzzy-model-based fault-tolerant design for nonlinear stochastic systems against simultaneous sensor and actuator faults. IEEE Transactions on Fuzzy Systems, 2013, 21(5):789-799 doi: 10.1109/TFUZZ.2012.2224872
    [26] Kchaou M, El Hajjaji A, Toumi A. Non-fragile H output feedback control design for continuous-time fuzzy systems. ISA Transactions, 2015, 54:3-14 doi: 10.1016/j.isatra.2014.05.026
    [27] Yu L, Chu J. An LMI approach to guaranteed cost control of linear uncertain time-delay systems. Automatica, 1999, 35(6):1155-1159 doi: 10.1016/S0005-1098(99)00007-2
    [28] Boukas E K. Stochastic Switching Systems:Analysis and Design. Berlin:Birkhäuser, 2005.
    [29] Jiang B, Staroswiecki M, Cocquempot V. Fault accommodation for nonlinear dynamic systems. IEEE Transactions on Automatic Control, 2006, 51(9):1578-1583 doi: 10.1109/TAC.2006.878732
    [30] Yan X G, Edwards C. Nonlinear robust fault reconstruction and estimation using a sliding mode observer. Automatica, 2007, 43(9):1605-1614 doi: 10.1016/j.automatica.2007.02.008
    [31] 杨俊起, 朱芳来. 基于高增益鲁棒滑模观测器的故障检测和隔离. 自动化学报, 38(12):2005-2013 doi: 10.3724/SP.J.1004.2012.02005

    Yang Jun-Qi, Zhu Fang-Lai. FDI based on high-gain robust sliding mode observers. Acta Automatica Sinica, 2012, 38(12):2005-2013 doi: 10.3724/SP.J.1004.2012.02005
  • 加载中
图(12)
计量
  • 文章访问数:  2752
  • HTML全文浏览量:  240
  • PDF下载量:  969
  • 被引次数: 0
出版历程
  • 收稿日期:  2015-06-24
  • 录用日期:  2016-05-17
  • 刊出日期:  2017-01-01

目录

    /

    返回文章
    返回