[1]
|
Mahmoud M S, Shi P. Robust Kalman filtering for continuous time-lag systems with Markovian jump parameters. IEEE Transactions on Circuits and Systems I:Fundamental Theory and Applications, 2003, 50(1):98-105 doi: 10.1109/TCSI.2002.807504
|
[2]
|
Park B Y, Kwon N K, Park P G. Stabilization of Markovian jump systems with incomplete knowledge of transition probabilities and input quantization. Journal of the Franklin Institute, 2015, 352(10):4354-4365 doi: 10.1016/j.jfranklin.2015.06.008
|
[3]
|
Liu M, Ho D W C, Shi P. Adaptive fault-tolerant compensation control for Markovian jump systems with mismatched external disturbance. Automatica, 2015, 58:5-14 doi: 10.1016/j.automatica.2015.04.022
|
[4]
|
Wu L G, Su X J, Shi P. Output feedback control of Markovian jump repeated scalar nonlinear systems. IEEE Transactions on Automatic Control, 2014, 59(1):199-204 doi: 10.1109/TAC.2013.2267353
|
[5]
|
Zhang Y, He Y, Wu M, Zhang J. Stabilization for Markovian jump systems with partial information on transition probability based on free-connection weighting matrices. Automatica, 2011, 47(1):79-84 doi: 10.1016/j.automatica.2010.09.009
|
[6]
|
田恩刚, 岳东, 杨继全. 具有随机非线性和部分转移概率未知的马尔科夫系统的H∞控制. 控制理论与应用, 2014, 31(3):392-396Tian En-Gang, Yue Dong, Yang Ji-Quan. H∞ control for Markovian jump systems with incomplete transition probabilities and probabilistic nonlinearities. Control Theory&Applications, 2014, 31(3):392-396
|
[7]
|
Li F B, Wu L G, Shi P, Lim C C. State estimation and sliding mode control for semi-Markovian jump systems with mismatched uncertainties. Automatica, 2015, 51:385-393 doi: 10.1016/j.automatica.2014.10.065
|
[8]
|
Du B Z, Lam J, Zou Y, Shu Z. Stability and stabilization for Markovian jump time-delay systems with partially unknown transition rates. IEEE Transactions on Circuits and Systems I:Regular Papers, 2013, 60(2):341-351 doi: 10.1109/TCSI.2012.2215791
|
[9]
|
Wu L G, Shi P, Gao H J. State estimation and sliding-mode control of Markovian jump singular systems. IEEE Transactions on Automatic Control, 2010, 55(5):1213-1219 doi: 10.1109/TAC.2010.2042234
|
[10]
|
Zhang Y S, Xu S Y, Chu Y M. Sliding mode observer-controller design for uncertain Markovian jump systems with time delays. International Journal of Robust and Nonlinear Control, 2012, 22(4):355-368 doi: 10.1002/rnc.v22.4
|
[11]
|
高飞, 张洪钺. 带马尔科夫参数时滞容错控制系统稳定性分析. 北京航空航天大学学报, 2006, 32(5):566-570 http://www.cnki.com.cn/Article/CJFDTOTAL-BJHK200605016.htmGao Fei, Zhang Hong-Yue. Stability of time-delay fault tolerant control systems with Markovian parameters. Journal of Beijing University of Aeronautics and Astronautics, 2006, 32(5):566-570 http://www.cnki.com.cn/Article/CJFDTOTAL-BJHK200605016.htm
|
[12]
|
Li F B, Wu L G, Shi P. Stochastic stability of semi-Markovian jump systems with mode-dependent delays. International Journal of Robust and Nonlinear Control, 2014, 24(18):3317-3330 doi: 10.1002/rnc.v24.18
|
[13]
|
Kao Y G, Li W, Wang C H. Nonfragile observer-based H∞ sliding mode control for Itô stochastic systems with Markovian switching. International Journal of Robust and Nonlinear Control, 2014, 24(15):2035-2047 doi: 10.1002/rnc.v24.15
|
[14]
|
Cong S, Zhang H T, Zou Y. A new exponential stability condition for delayed systems with Markovian switching. Acta Automatica Sinica, 2010, 36(7):1025-1029 http://cn.bing.com/academic/profile?id=82bb61a498a6778a2d539a6c0446bbab&encoded=0&v=paper_preview&mkt=zh-cn
|
[15]
|
宋杨, 董豪, 费敏锐. 基于切换频度的马尔科夫网络控制系统均方指数镇定. 自动化学报, 2012, 38(5):876-881 doi: 10.3724/SP.J.1004.2012.00876Song Yang, Dong Hao, Fei Min-Rui. Mean square exponential stabilization of Markov networked control systems based on switching frequentness. Acta Automatica Sinica, 2012, 38(5):876-881 doi: 10.3724/SP.J.1004.2012.00876
|
[16]
|
Liu M, Shi P, Zhang L X, Zhao X D. Fault-tolerant control for nonlinear Markovian jump systems via proportional and derivative sliding mode observer technique. IEEE Transactions on Circuits and Systems I:Regular Papers, 2011, 58(11):2755-2764 doi: 10.1109/TCSI.2011.2157734
|
[17]
|
Yu J Y, Liu M, Yang W, Shi P, Tong S Y. Robust fault detection for Markovian jump systems with unreliable communication links. International Journal of Systems Science, 2013, 44(11):2015-2026 doi: 10.1080/00207721.2012.683832
|
[18]
|
Shi P, Liu M, Zhang L X. Fault-tolerant sliding-mode-observer synthesis of Markovian jump systems using quantized measurements. IEEE Transactions on Industrial Electronics, 2015, 62(9):5910-5918 doi: 10.1109/TIE.2015.2442221
|
[19]
|
Chen L H, Huang X L, Fu S S. Fault-tolerant control for Markovian jump delay systems with an adaptive observer approach. Circuits, Systems, and Signal Processing, DOI: 10.1007/s00034-016-0277-8
|
[20]
|
Li H Y, Gao H J, Shi P, Zhao X D. Fault-tolerant control of Markovian jump stochastic systems via the augmented sliding mode observer approach. Automatica, 2014, 50(7):1825-1834 doi: 10.1016/j.automatica.2014.04.006
|
[21]
|
王国良, 孙广兢, 薄海英. 广义马尔科夫跳变系统的部分模态依赖观测器设计. 控制与决策, 2015, 30(4):733-738 http://www.cnki.com.cn/Article/CJFDTOTAL-KZYC201504025.htmWang Guo-Liang, Sun Guang-Jin, Bo Hai-Ying. Partially mode-dependent observer design of singular Markovian jump systems. Control Theory&Applications, 2015, 30(4):733-738 http://www.cnki.com.cn/Article/CJFDTOTAL-KZYC201504025.htm
|
[22]
|
Shen H, Xu S Y, Zhou J P, Lu J J. Fuzzy H∞ filtering for nonlinear Markovian jump neutral systems. International Journal of Systems Science, 2011, 42(5):767-780 doi: 10.1080/00207721003790351
|
[23]
|
Zhang X M, Lu G P, Zheng Y F. Observer design for descriptor Markovian jumping systems with nonlinear perturbations. Circuits, Systems&Signal Processing, 2008, 27(1):95-112 http://cn.bing.com/academic/profile?id=234d086e260c7b7eca39784a2048b582&encoded=0&v=paper_preview&mkt=zh-cn
|
[24]
|
He S P, Liu F. Adaptive observer-based fault estimation for stochastic Markovian jumping systems. Abstract and Applied Analysis, 2012, 2012:Article ID 176419
|
[25]
|
Liu M, Cao X B, Shi P. Fuzzy-model-based fault-tolerant design for nonlinear stochastic systems against simultaneous sensor and actuator faults. IEEE Transactions on Fuzzy Systems, 2013, 21(5):789-799 doi: 10.1109/TFUZZ.2012.2224872
|
[26]
|
Kchaou M, El Hajjaji A, Toumi A. Non-fragile H∞ output feedback control design for continuous-time fuzzy systems. ISA Transactions, 2015, 54:3-14 doi: 10.1016/j.isatra.2014.05.026
|
[27]
|
Yu L, Chu J. An LMI approach to guaranteed cost control of linear uncertain time-delay systems. Automatica, 1999, 35(6):1155-1159 doi: 10.1016/S0005-1098(99)00007-2
|
[28]
|
Boukas E K. Stochastic Switching Systems:Analysis and Design. Berlin:Birkhäuser, 2005.
|
[29]
|
Jiang B, Staroswiecki M, Cocquempot V. Fault accommodation for nonlinear dynamic systems. IEEE Transactions on Automatic Control, 2006, 51(9):1578-1583 doi: 10.1109/TAC.2006.878732
|
[30]
|
Yan X G, Edwards C. Nonlinear robust fault reconstruction and estimation using a sliding mode observer. Automatica, 2007, 43(9):1605-1614 doi: 10.1016/j.automatica.2007.02.008
|
[31]
|
杨俊起, 朱芳来. 基于高增益鲁棒滑模观测器的故障检测和隔离. 自动化学报, 38(12):2005-2013 doi: 10.3724/SP.J.1004.2012.02005Yang Jun-Qi, Zhu Fang-Lai. FDI based on high-gain robust sliding mode observers. Acta Automatica Sinica, 2012, 38(12):2005-2013 doi: 10.3724/SP.J.1004.2012.02005
|