2.793

2018影响因子

(CJCR)

• 中文核心
• EI
• 中国科技核心
• Scopus
• CSCD
• 英国科学文摘

## 留言板

 引用本文: 王隔霞. 一类非线性系统的量化控制器的设计. 自动化学报, 2016, 42(1): 140-144.
WANG Ge-Xia. Design of Quantizer for a Class of Nonlinear Systems. ACTA AUTOMATICA SINICA, 2016, 42(1): 140-144. doi: 10.16383/j.aas.2016.c150394
 Citation: WANG Ge-Xia. Design of Quantizer for a Class of Nonlinear Systems. ACTA AUTOMATICA SINICA, 2016, 42(1): 140-144.

## Design of Quantizer for a Class of Nonlinear Systems

Funds:

National Natural Science Foundation of China 61203006, 11502141

the Innovation Program of Shanghai Municipal Education Commission 14ZZ151

Natural Science Foundation of Shanghai 12ZR1444400

###### Author Bio: Associate professor at Shanghai University of Electric Power. She received her Ph. D. degree from East China Normal University in 2008. She had visited the Electrical and Electronic Engineering Department of Melbourne University during 2014 for one year. Her research interest covers controller design and stability analysis of networked control systems, singular perturbation systems and nonlinear systems, and chaos synchronization
• 摘要: 研究了一类非线性离散系统的量化反馈控制.对于一类满足齐次性质的非线性系统,针对有界的初始状态,我们设计了具有可数个固定控制输入的控制方式,实现了用"可数"去镇定"不可数"这一控制问题.值得指出的是,我们的结论可以直接应用到线性的情形,并与已有的关于线性系统的结论保持一致.同时,给出了例子验证了结论的有效性.
• 图  1  $\phi(x)$ 与 $x$ 同号时,控制输入在 $x\in(\rho c,c]$ 的图形

Fig.  1  The input for $x\in(\rho c,c]$ when $\phi(x) x>0$ ( $x\neq0$ )

图  2  非线性系统的量化控制器下的闭环响应

Fig.  2  Response of the closed-loop nonlinear system with the quantized controller

图  3  非线性系统的量化控制器下的输入

Fig.  3  Input of the closed-loop nonlinear system with the quantized controller

图  4  非线性系统的量化器的参数 $i(k)$

Fig.  4  Parameters $i(k)$ of the quantizer for the nonlinear system

•  [1] Elia N, Mitter S K. Stabilization of linear systems with limited information. IEEE Transactions on Automatic Control, 2001, 46(9):1384-1400 doi: 10.1109/9.948466 [2] Tatikonda S, Mitter S. Control under communication constraints. IEEE Transactions on Automatic Control, 2004, 49(7):1056-1068 [3] Liberzon D. Hybrid feedback stabilization of systems with quantized signals. Automatica, 2003, 39:1543-1554 [4] Fu M Y, Xie L H. The sector bound approach to quantized feedback control. IEEE Transactions on Automatic Control, 2005, 50(11):1698-1711 [5] Ishii H, Francis B A. Quadratic stabilization of sampled-data systems with quantization. Automatica, 2003, 39(10):1793-1800 [6] Sharon Y, Liberzon D. Input to state stabilizing controller for systems with coarse quantization. IEEE Transactions on Automatic Control, 2012, 57(4):830-844 [7] Brockett R W, Liberzon D. Quantized feedback stabilization of linear systems. IEEE Transactions on Automatic Control, 2000, 45(7):1279-1289 doi: 10.1109/9.867021 [8] Tarbouriech S, Gouaisbaut F. Control design for quantized linear systems with saturations. IEEE Transactions on Automatic Control, 2012, 57(7):1883-1889 [9] 王隔霞. 线性不确定系统信息受限下的远程跟踪. 自动化学报, 2012, 38(4):632-638Wang Ge-Xia. Remote output regulation for linear uncertain systems via a limited capacity communication channel. Acta Automatica Sinica, 2012, 38(4):632-638 [10] Zhai G S, Chen N, Gui W H. Design of quantised dynamic output feedback for decentralised H_∞ control systems. IET Control Theory & Applications, 2013, 7(10):1408-1414 [11] Li F B, Shi P, Wu L G, Basin M V, Lim C C. Quantized control design for cognitive radio networks modeled as nonlinear semi-Markovian jump systems. IEEE Transactions on Industrial Electronics, 2015, 62(4):2330-2340 [12] Abdallah C T, Tanner H G. Complex networked control systems:introduction to the special section. IEEE Control Systems, 2007, 27(4):30-32 [13] Antsaklis P, Baillieul J. Special issue on technology of networked control systems. Proceedings of the IEEE, 2007, 95(1):5-8 [14] Premaratne U, Halgamuge S K, Mareels I M Y. Event triggered adaptive differential modulation:a new method for traffic reduction in networked control systems. IEEE Transactions on Automatic Control, 2013, 58(7):1696-1706

##### 计量
• 文章访问数:  1082
• HTML全文浏览量:  140
• PDF下载量:  1006
• 被引次数: 0
##### 出版历程
• 收稿日期:  2015-06-23
• 录用日期:  2015-10-19
• 刊出日期:  2016-01-01

/

• 分享
• 用微信扫码二维码

分享至好友和朋友圈