2.793

2018影响因子

(CJCR)

  • 中文核心
  • EI
  • 中国科技核心
  • Scopus
  • CSCD
  • 英国科学文摘

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

一类非线性系统的量化控制器的设计

王隔霞

王隔霞. 一类非线性系统的量化控制器的设计. 自动化学报, 2016, 42(1): 140-144. doi: 10.16383/j.aas.2016.c150394
引用本文: 王隔霞. 一类非线性系统的量化控制器的设计. 自动化学报, 2016, 42(1): 140-144. doi: 10.16383/j.aas.2016.c150394
WANG Ge-Xia. Design of Quantizer for a Class of Nonlinear Systems. ACTA AUTOMATICA SINICA, 2016, 42(1): 140-144. doi: 10.16383/j.aas.2016.c150394
Citation: WANG Ge-Xia. Design of Quantizer for a Class of Nonlinear Systems. ACTA AUTOMATICA SINICA, 2016, 42(1): 140-144. doi: 10.16383/j.aas.2016.c150394

一类非线性系统的量化控制器的设计

doi: 10.16383/j.aas.2016.c150394
基金项目: 

国家自然科学基金 61203006, 11502141

上海市教委科研创新项目 14ZZ151

上海市自然科学基金 12ZR1444400

详细信息
    作者简介:

    王隔霞 上海电力学院数理学院副教授.2008年于华东师范大学获得博士学位.2014年起,在墨尔本大学电气工程学院访学一年.主要研究方向为网络化控制系统的设计和分析,奇异摄动系统稳定性分析,非线性系统稳定性,混沌系统的同步.E-mail:gxwang_2004@163.com

Design of Quantizer for a Class of Nonlinear Systems

Funds: 

National Natural Science Foundation of China 61203006, 11502141

the Innovation Program of Shanghai Municipal Education Commission 14ZZ151

Natural Science Foundation of Shanghai 12ZR1444400

More Information
    Author Bio:

    Associate professor at Shanghai University of Electric Power. She received her Ph. D. degree from East China Normal University in 2008. She had visited the Electrical and Electronic Engineering Department of Melbourne University during 2014 for one year. Her research interest covers controller design and stability analysis of networked control systems, singular perturbation systems and nonlinear systems, and chaos synchronization

  • 摘要: 研究了一类非线性离散系统的量化反馈控制.对于一类满足齐次性质的非线性系统,针对有界的初始状态,我们设计了具有可数个固定控制输入的控制方式,实现了用"可数"去镇定"不可数"这一控制问题.值得指出的是,我们的结论可以直接应用到线性的情形,并与已有的关于线性系统的结论保持一致.同时,给出了例子验证了结论的有效性.
  • 图  1  $\phi(x)$ 与 $x$ 同号时,控制输入在 $x\in(\rho c,c]$ 的图形

    Fig.  1  The input for $x\in(\rho c,c]$ when $\phi(x) x>0$ ( $x\neq0$ )

    图  2  非线性系统的量化控制器下的闭环响应

    Fig.  2  Response of the closed-loop nonlinear system with the quantized controller

    图  3  非线性系统的量化控制器下的输入

    Fig.  3  Input of the closed-loop nonlinear system with the quantized controller

    图  4  非线性系统的量化器的参数 $i(k)$

    Fig.  4  Parameters $i(k)$ of the quantizer for the nonlinear system

  • [1] Elia N, Mitter S K. Stabilization of linear systems with limited information. IEEE Transactions on Automatic Control, 2001, 46(9):1384-1400 doi: 10.1109/9.948466
    [2] Tatikonda S, Mitter S. Control under communication constraints. IEEE Transactions on Automatic Control, 2004, 49(7):1056-1068 doi: 10.1109/TAC.2004.831187
    [3] Liberzon D. Hybrid feedback stabilization of systems with quantized signals. Automatica, 2003, 39:1543-1554 doi: 10.1016/S0005-1098(03)00151-1
    [4] Fu M Y, Xie L H. The sector bound approach to quantized feedback control. IEEE Transactions on Automatic Control, 2005, 50(11):1698-1711 doi: 10.1109/TAC.2005.858689
    [5] Ishii H, Francis B A. Quadratic stabilization of sampled-data systems with quantization. Automatica, 2003, 39(10):1793-1800 doi: 10.1016/S0005-1098(03)00179-1
    [6] Sharon Y, Liberzon D. Input to state stabilizing controller for systems with coarse quantization. IEEE Transactions on Automatic Control, 2012, 57(4):830-844 doi: 10.1109/TAC.2011.2166293
    [7] Brockett R W, Liberzon D. Quantized feedback stabilization of linear systems. IEEE Transactions on Automatic Control, 2000, 45(7):1279-1289 doi: 10.1109/9.867021
    [8] Tarbouriech S, Gouaisbaut F. Control design for quantized linear systems with saturations. IEEE Transactions on Automatic Control, 2012, 57(7):1883-1889 doi: 10.1109/TAC.2011.2179845
    [9] 王隔霞. 线性不确定系统信息受限下的远程跟踪. 自动化学报, 2012, 38(4):632-638 doi: 10.3724/SP.J.1004.2012.00632

    Wang Ge-Xia. Remote output regulation for linear uncertain systems via a limited capacity communication channel. Acta Automatica Sinica, 2012, 38(4):632-638 doi: 10.3724/SP.J.1004.2012.00632
    [10] Zhai G S, Chen N, Gui W H. Design of quantised dynamic output feedback for decentralised H_∞ control systems. IET Control Theory & Applications, 2013, 7(10):1408-1414
    [11] Li F B, Shi P, Wu L G, Basin M V, Lim C C. Quantized control design for cognitive radio networks modeled as nonlinear semi-Markovian jump systems. IEEE Transactions on Industrial Electronics, 2015, 62(4):2330-2340 doi: 10.1109/TIE.2014.2351379
    [12] Abdallah C T, Tanner H G. Complex networked control systems:introduction to the special section. IEEE Control Systems, 2007, 27(4):30-32 doi: 10.1109/MCS.2007.384128
    [13] Antsaklis P, Baillieul J. Special issue on technology of networked control systems. Proceedings of the IEEE, 2007, 95(1):5-8 doi: 10.1109/JPROC.2006.887291
    [14] Premaratne U, Halgamuge S K, Mareels I M Y. Event triggered adaptive differential modulation:a new method for traffic reduction in networked control systems. IEEE Transactions on Automatic Control, 2013, 58(7):1696-1706 doi: 10.1109/TAC.2013.2242571
  • 加载中
图(4)
计量
  • 文章访问数:  1082
  • HTML全文浏览量:  140
  • PDF下载量:  1006
  • 被引次数: 0
出版历程
  • 收稿日期:  2015-06-23
  • 录用日期:  2015-10-19
  • 刊出日期:  2016-01-01

目录

    /

    返回文章
    返回